AN ELEMENTARY PROOF OF A q-BINOMIAL IDENTITY

I.G. MACDONALD*

In the previous paper [Z] D. Zeilberger asks for an elementary, non-combinatorial proof of the identity (KOH). We shall give such a proof.

We shall use the notation of [M]. If $\lambda = (\lambda_1, \lambda_2, ...)$ is a partition, let $|\lambda| = \sum \lambda_i$ denote the weight of λ , and λ' the conjugate partition. Then for each $i \ge 1$,

$$m_i(\lambda) = \lambda'_i - \lambda'_{i+1}$$

is the number of parts of λ equal to *i*. If $\mu = (\mu_1, \mu_2, ...)$ is another partition, $\lambda + \mu$ denotes the partition $(\lambda_1 + \mu_1, \lambda_2, \mu_2, ...)$ and $\lambda \cup \mu$ the partition whose parts are those of λ and μ , arranged in descending order. We have then $(\lambda \cup \mu)' = \lambda' + \mu'$.

Furthermore, for any partition λ we define

$$n(\lambda) = \sum (i-1)\lambda_i = \sum {\binom{\lambda'_i}{2}}$$

 and

$$b_{\lambda}(q) = \prod_{i \ge 1} \varphi_{m_i(\lambda)}(q),$$

where q is an indeterminate, $\varphi_m(q) = (1-q)(1-q^2)\dots(1-q^m)$ if $m \ge 1$, and $\varphi_0(q) = 1$. Then the identity (KOH) in [Z] may be written in the form

(KOH)
$$G(N,k) = \sum_{|\lambda|=k} q^{2n(\lambda)} F(N,\lambda)$$

where

$$F(N,\lambda) = \prod_{i\geq 1} G((N+2)i - 2\sum_{j=1}^{i} \lambda'_j, m_i(\lambda))$$

and G(N,k) is the gaussian polynomial (or q-binomial coefficient)

$$G(N,k) = \begin{bmatrix} N+k \\ k \end{bmatrix} = \frac{(1-q^{N+1})\cdots(1-q^{N+k})}{(1-q)(1-q^2)\cdots(1-q^k)}.$$

The identity (KOH) is a consequence of the following two identities:

(A)
$$G(N,k) = \sum_{r=0}^{k} q^{Nr} / \varphi_r(q^{-1}) \varphi_{k-r}(q),$$

^{*}School of Mathematical Sciences, Queen Mary College, London E1 4NS, England.

D. Stanton (ed.), q -Series and Partitions

[©] Springer-Verlag New York Inc. 1989

(B)
$$\sum_{|\lambda|=k} q^{2n(\lambda)} b_{\lambda}(q)^{-1} = \varphi_k(q)^{-1}$$

74

We shall first give the proof of (KOH), and then comment on (A) and (B).

From (A) and the definition of $F(N, \lambda)$ we have

(1)
$$F(N,\lambda) = \prod_{i\geq 1} \sum_{r_i=0}^{m_i(\lambda)} q^{((N+2)i-2\sum_{j=1}^i \lambda'_j)r_i} /\varphi_{r_i}(q^{-1})\varphi_{m_i(\lambda)-r_i}(q).$$

Let μ be the partition $(1^{r_1}2^{r_2}...)$ and ν the partition $(1^{m_1(\lambda)-r_1}2^{m_2(\lambda)-r_2}...)$, so that $\lambda = \mu \cup \nu$ (and therefore also $\lambda' = \mu' + \nu'$). Then we can rewrite (1) as

(2)
$$q^{2n(\lambda)}F(N,\lambda) = \sum_{\mu,\nu} q^{a(\mu,\nu)}/b_{\mu}(q^{-1})b_{\nu}(q)$$

where the sum is over (μ, ν) such that $\mu \cup \nu = \lambda$, and

$$\begin{aligned} a(\mu,\nu) &= 2n(\lambda) + \sum_{i\geq 1} ((N+2)i - 2\sum_{1}^{i} \lambda'_{j})(\mu'_{i} - \mu'_{i+1}) \\ &= \sum_{i} (\lambda'^{2}_{i} - \lambda'_{i}) + (N+2)|\mu| - 2\sum_{i} \lambda'_{i}\mu'_{i} \\ &= N|\mu| - 2n(\mu) + 2n(\nu) \end{aligned}$$

(since $\lambda'_i = \mu'_i + \nu'_i$). It follows that

$$\sum_{|\lambda|=k} q^{2n(\lambda)} F(N,\lambda) = \sum_{\substack{\mu,\nu\\ |\mu|+|\nu|=k}} q^{N|\mu|-2n(\mu)+2n(\nu)} / b_{\mu}(q^{-1}) b_{\nu}(q)$$
$$= \sum_{r=0}^{k} q^{Nr} \sum_{|\mu|=r} \frac{q^{-2n(\mu)}}{b_{\mu}(q^{-1})} \sum_{|\nu|=k-r} \frac{q^{2n(\nu)}}{b_{\nu}(q)}$$
$$= \sum_{r=0}^{k} q^{Nr} / \varphi_{r}(q^{-1}) \varphi_{k-r}(q) \quad \text{by (B)}$$
$$= G(N,k) \quad \text{by (A)}$$

and the proof is complete.

REMARKS. The identity (A) is just the q-binomial theorem, applied to the numerator of G(N, k). The identity (B) (which is also the limiting case $N \to \infty$ of (KOH)) is due to Philip Hall [H], who gave a simple and elegant combinatorial proof by counting partitions. Another proof of (B) is implicit in [M], Chapter III, by combining §2, Ex. 1 with §4, Ex. 1. More generally, these two exercises imply the identity

$$(B_n) \qquad \left[\begin{array}{c} n+k-1\\ k \end{array} \right] = \sum_{|\lambda|=k} q^{2n(\lambda)} \varphi_n(q) / \varphi_{n-\lambda_1'}(q) \varphi_{\lambda_1'-\lambda_2'}(q) \dots,$$

of which (B) is the limiting case as $n \to \infty$. But George Andrews has remarked that (B_n) can be proved much more simply; since

$$\varphi_n(q)/\varphi_{n-\lambda'_1}(q)\varphi_{\lambda'_i-\lambda'_2}(q)\cdots = \begin{bmatrix} n\\\lambda'_1\end{bmatrix}\begin{bmatrix}\lambda'_1\\\lambda'_2\end{bmatrix}\cdots,$$

 (B_n) follows by iteration from the q-Vandermonde identity

$$\begin{bmatrix} n+k-1\\k \end{bmatrix} = \sum_{r\geq 0} q^{r(r-1)} \begin{bmatrix} n\\r \end{bmatrix} \begin{bmatrix} k-1\\k-r \end{bmatrix}$$

which in turn follows from the q-binomial theorem, by picking out the coefficient of t^k on either side of

$$\prod_{i=0}^{n+k-2} (1+q^i t) = \prod_{i=0}^{k-2} (1+q^i t) \prod_{j=0}^{n-1} (1+q^{j+k-1} t).$$

Thus both (A) and (B), and therefore also (KOH), are consequences of the q-binomial theorem alone.

REFERENCES

- [H] P. HALL, A partition formula connected with Abelian groups, Comm. Math. Helv., II (1938), 126-129.
- [M] I.G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979.
- [Z] D. ZEILBERGER, A one-line high school algebra proof of the unimodality of Gaussian polynomials $\begin{bmatrix} n \\ k \end{bmatrix}$ for $k \leq 20$, in Dennis Stanton (ed.), q-Series and Partitions, IMA Volumes in Mathematics and its Applications, Springer-Verlag, New York (1989).