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Abstract

We give a bijective proof of the quintuple product identity using bijective proofs of

Jacobi’s triple product identity and Euler’s recurrence relation.
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1 Introduction

The quintuple product identity is stated in the form

∞∑
n=−∞

qn(3n+1)/2(x3n − x−3n−1)

=
∞∏
n=1

(1− xqn)(1− qn)(1− x−1qn−1)(1− x2q2n−1)(1− x−2q2n−1). (1)
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It can be presented in many different forms and various proofs have been given. But, (1)

seems to be the form which appears most frequently. Shaun Cooper [2] gave a comprehen-

sive survey of the work on the quintuple product identity, and classified and discussed all

known proofs. For historical notes and detailed proofs, the reader is directed to [2].

Although at least 29 proofs of the quintuple product identity have been given, no direct

combinatorial proof has yet been shown. J. Lepowsky and S. Milne set q = uv2, x = v−1 in

(1) to obtain

∞∑
n=−∞

un(3n+1)/2vn(3n−2) −
∞∑

n=−∞

un(3n+1)/2v(n+1)(3n+1)

=
∞∏
n=1

(1− unv2n−1)(1− un−1v2n−1)(1− unv2n)(1− u2n−1v4n−4)(1− u2n−1v2n),

and they gave the following combinatorial interpretation:

The excess of the number of partitions of (m,n) into an even number of distinct

parts of the type (a, 2a), (b, 2b−1), (c−1, 2c−1), (2d−1, 4d−4), (2e−1, 4e)

over those into an odd number of parts is 1 or−1 if (m,n) is of the type (r(3r+

1)/2, r(3r−2)) or (r(3r+1)/2, (r+1)(3r+1)), respectively, and 0 otherwise.

They remarked that a direct combinatorial proof of it can be given. However, Cooper [2]

states that ”this proof was never published and the notes are most likely now lost.”

M. V. Subbaro and M. Vidyasagar [5] deduced the following identities from the quintuple

product identity:

1 +
∞∑
n=1

q3n2

x3n−1(xq2n − x−1q−2n)

= 1 +
∞∑
n=1

(−1)nxnqn(1 + qx)(1 + q3x) · · · (1 + q2n−1x)

=
∞∑
n=0

(−1)nx2nqn(n+1)

(1 + qx)(1 + q3x) · · · (1 + q2n+1x)
, (2)
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and Subbarao [6] gave a combinatorial proof of (2). In [2], Cooper mentioned that it is not a

completely combinatorial proof of the quintuple product identity because a lot of algebraic

rearrangements are required to derive (2).

Thus, the goal of this paper is to give a bijective proof of the quintuple product identity,

especially in the form (1). We remark that the right hand side of (1) can be viewed as a

product of two different forms of Jacobi’s triple product identity

∞∑
n=−∞

qn
2

xn =
∞∏
n=1

(1 + xq2n−1)(1 + x−1q2n−1)(1− q2n). (3)

This naturally suggests that we can apply two bijections of (3) in different forms. In order to

complete the proof, we also employ a bijective proof of Euler’s pentagonal number theorem

in the form
∞∏
n=1

(1− qn)−1

∞∑
n=−∞

(−1)nq
n(3n+1)

2 = 1.

In the next section, we first derive a combinatorial interpretation from (1), and present the

aforementioned three bijective proofs. Lastly, we give a bijective proof of the quintuple

product identity using them.

2 A bijective proof the quintuple product identity

Let D be the set of partitions into distinct positive parts, D0 be the set of partitions into

distinct nonnegative parts and O be the set of partitions into distinct odd parts. The weight

|π| and the length `(π) of a partition π denote the sum of the parts and the number of parts

of π, respectively.

We can easily see that (1) has the following combinatorial interpretation by comparing

the coefficients of xmqN on each side of (1) :

Theorem 1. The excess of the number of partitions of N into an even number of parts in the

form

N = π1 + π2 + π3 + σ1 + σ2,
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where π1, π2 ∈ D, π3 ∈ D0, σ1, σ2 ∈ O and `(π1) − `(π3) + 2`(σ1) − 2`(σ2) = m, over

those into an odd number of parts is 1 or −1 if (m,N) = (3n, n(3n + 1)/2) or (m,N) =

(−3n− 1, n(3n+ 1)/2), respectively, and 0 otherwise.

Before proving Theorem 1, we first introduce two combinatorial proofs of Jacobi’s triple

product identity. J. Zolnowsky [7] made the substitutions q2 = uv, x = −(u/v)1/2 in (3) to

obtain
∞∏
n=1

(1− unvn−1)(1− un−1vn)(1− unvn) = 1 +
∞∑
n=1

(−1)n
(
u

n(n+1)
2 v

n(n−1)
2 + u

n(n−1)
2 v

n(n+1)
2

)
,

for which he gave a combinatorial proof. Using his bijection, we can also give a combinato-

rial proof of Jacobi’s triple identity in the form
∞∑

n=−∞

(−1)nxnq
n(n+1)

2 =
∞∏
n=1

(1− xqn)(1− qn)(1− x−1qn−1). (4)

Comparing the coefficient of xmqN on the both sides of (4), we obtain the following combi-

natorial interpretation.

Theorem 2. The excess of the number of partitions of N into an even number of parts in the

form N = τ1 + τ2 + τ3, where τ1, τ2 ∈ D, τ3 ∈ D0 and `(τ1) − `(τ3) = m, over those into

an odd number of parts is (−1)n if (m,N) = (n, n(n+ 1)/2), and 0 otherwise.

For convenience, we follow Zolnowsky’s notations and rules from [7]. We draw the

Ferrers diagram of a partition placing parts left to right in decreasing order. For instance,

the partitions π = (6, 5, 4, 2, 1) ∈ D and σ = (5, 4, 3, 2, 1, ) ∈ D are represented as the

following.

π :

•
• •
• • •
• • •
• • • •
• • • • •

σ :

•
• •
• • •
• • • •
• • • • •
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We define the slope of the diagrams to be the portion consisting of ◦ in the following graphs.

π :

◦
• ◦
• • ◦
• • •
• • • •
• • • • •

σ :

◦
• ◦
• • ◦
• • • ◦
• • • • ◦

Thus, the length of the slope is equal to the number of consecutive parts starting from the

largest one. We say that the slope of a partition in D is nondetachable if the largest part

is the same as the number of parts as in the graph of σ, and otherwise, we say the slope is

detachable as in the graph of π. We define a slope of an empty partition to be nondetachable.

We can also define the slope of diagrams of partitions in D0 in a similar way. For exam-

ple, the length of slope of π = (5, 4, 3, 1, 0) is 3 and that of σ = (4, 3, 2, 1, 0) is 5. Similarly,

we say that the slope of π is detachable and the slope of σ is nondetachable. Note that if the

slope of a partition ∈ D0 is nondetachable, then the largest part is the number of parts −1.

Proof of Theorem 2. First, we consider the case when m ≥ 0, i.e. `(τ1) ≥ `(τ3).

Let LS denote the length of the slope of τ1, HL designate the largest part of τ1 (0 if τ1 is

empty) and HM and HR denote the smallest parts of τ2 and τ3, respectively (infinite if they

are empty).

Case 1 : LS ≥ HM (Note that τ2 is not empty.)

Move the least part of τ2 onto the slope of τ1 to create a new slope. For instance,

(5, 4, 3, 1) + (4, 2) + (3) corresponds to (6, 5, 3, 1) + (4) + (3).

•
• •
• • •
• • •
• • • •

•
•
• ◦
• ◦

•
•
•

⇒

◦
• ◦
• •
• • •
• • •
• • • •

•
•
•
•

•
•
•
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Case 2 : LS < HM, and the slope is detachable.

Remove the slope of τ1 to create a new smallest part τ2. For instance, (6, 5, 3, 1)+(4)+(3)

corresponds to (5, 4, 3, 1) + (4, 2) + (3).

◦
• ◦
• •
• • •
• • •
• • • •

•
•
•
•

•
•
•

⇒

•
• •
• • •
• • •
• • • •

•
•
• ◦
• ◦

•
•
•

Note that Case 1 and Case 2 correspond to each other.

Case 3 : LS < HM, the slope is nondetachable, and HM ≤ HL+HR with nonempty τ2.

In this case, HM > HL = LS. Remove the smallest part of τ2 to create a new largest

part (=HL+1) and a new smallest part (since 0 ≤ HM − (HL +1) < HR). For instance,

(3, 2, 1) + (6, 5) + (3) corresponds to (4, 3, 2, 1) + (6) + (3, 1).

•
• •
• • •

•
• ◦
• ◦
• ◦
• ◦
• ◦

•
•
•

⇒
◦
◦ •
◦ • •
◦ • • •

•
•
•
•
•
•

•
•
• ◦

Case 4 : LS < HM, the slope is nondetachable, and HM > HL+HR with nonempty τ3.

(Note that τ1 is nonempty since m ≥ 0.)

Add the largest part of τ1 and the smallest part of τ3 to form a new smallest part of τ2.
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For instance, (4, 3, 2, 1) + (6) + (3, 1) corresponds to (3, 2, 1) + (6, 5) + (3).

◦
◦ •
◦ • •
◦ • • •

•
•
•
•
•
•

•
•
• ◦

⇒
•
• •
• • •

•
• ◦
• ◦
• ◦
• ◦
• ◦

•
•
•

Note that Case 3 and Case 4 correspond to each other. Also, note that all the four op-

erations change the parity of partitions and none of the rules changes the condition `(τ1) −
`(τ3) = m.

The bijection fails when the slope of τ1 is nondetachable, and τ2 and τ3 are empty, i.e.

for some n ≥ 0,

N =
n(n+ 1)

2
, m = `(τ1)− `(τ3) = `(τ1) = n,

and the excess of the number of partitions of N into an even number of parts over those into

an odd number parts is (−1)n.

Now, consider the case when m < 0. In this case, we switch the roles of τ1 and τ3. In

other words, LS is the length of the slope of τ3, HL denotes the largest part of τ3 and HM

and HR designate the smallest parts of τ2 and τ1, respectively. Recall that if the slope of τ3
is nondetachable, then LS= HL +1 (so, in Case 3, HM-(HL+1)≥ 1). Similarly, the bijection

fails when τ1 and τ2 are empty and the slope of τ3 is nondetachable, i.e. for some negative

integer n,

m = `(τ1)− `(τ3) = −`(τ3) = n, N = 0 + 1 + · · ·+ (−n− 1) =
n(n+ 1)

2
,

and the excess of the number of partitions of N into an even number of parts over those into

an odd number parts is (−1)n. Hence, we complete the proof.

Next, we introduce another combinatorial proof of Jacobi’s triple product identity in the
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form
∞∏
n=1

(1 + xq2n−1)(1 + x−1q2n−1) =
( ∞∑
n=−∞

xnqn
2
)( ∞∏

n=1

(1− q2n)−1
)

=
( ∞∑
n=−∞

xnqn
2
)( ∞∑

n=0

pe(2n)q2n
)
, (5)

where pe(n) is the number of partitions of n into even parts. Comparing the coefficients of

xkqN on each side of (5), R. P. Lewis derived the following combinatorial interpretation and

gave a bijective proof of it. We also present his proof here.

Theorem 3. The number of partitions of N in the form N = π + σ, where π, σ ∈ O and

`(π)− `(σ) = k is equal to pe(N − k2).

Remark : Lewis proved Theorem 3 with p((N − k2)/2) instead of pe(N − k2) in [4].

Theorem 3 implies that given a partition of N = π + σ with π, σ ∈ O and `(π)− `(σ) = k,

we can find a partition τ bijectively such that N = k2 + τ and τ is a partition of N − k2 into

even parts.

Proof. Let us consider the case when k ≥ 0 only since we can exchange π and σ. Given

N = π + σ with π, σ ∈ O and `(π) − `(σ) = k, we draw the self-conjugate diagrams G1

and G2, respectively. For example, if N = 38, π = (11, 9, 5, 1) and σ = (9, 3), then

G1 :

• • • • • •
• • • • • •
• • • • •
• • • •
• • •
• •

G2 :

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦
◦

Now, superimpose G2 on G1 with the top left corner of G2 over the point k + 1 places down

the diagonal of G1. And then, remove the top left square of size k2. For our example, since
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k = 2,

• • • • • •
• • • • • •
• • � � � ◦ ◦
• • � � ◦
• • � ◦
• • ◦

◦

⇒
• •
• •

+

• • • •
• • • •

• • � � � ◦ ◦
• • � � ◦
• • � ◦
• • ◦

◦

Lastly, switch • and ◦ below the diagonal of the diagram.

• •
• •

+

• • • •
• • • •

◦ ◦ � � � ◦ ◦
◦ ◦ � � ◦
◦ ◦ � •
◦ ◦ •

•

The new diagram is composed of the graph, drawn with •, of a partition of (N − k2)/2 with

the graph of its conjugate, drawn with ◦, superimposed.

• •
• •

+

• • • •
• • • •

◦ ◦ � � � ◦ ◦ 7

◦ ◦ � � ◦ 5

◦ ◦ � • 3

◦ ◦ • 2

•
7 5 3 2

Since we have the two same partitions of (N − k2)/2, by multiplying each part by 2, we

obtain a partition of N − k2 into even parts. Thus, for our example, we obtain a partition
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14 + 10 + 6 + 4 of N − k2 = 38 − 4 = 34. This process is obviously reversible, so we

complete the proof.

Lastly, we introduce a bijective proof of Euler’s recurrence relation by David M Bressoud

and Doron Zeilberger [1]. From Euler’s pentagonal number theorem in the form

∞∏
n=1

(1− qn)−1

∞∑
n=−∞

(−1)nq
n(3n+1)

2 =
∞∑
n=0

p(n)qn
∞∑

n=−∞

(−1)nq
n(3n+1)

2 = 1, (6)

we deduce the following theorem.

Theorem 4. For n ≥ 1,∑
i even

p(n− i(3i+ 1)/2) =
∑
i odd

p(n− i(3i+ 1)/2),

where i ∈ Z is allowed to be negative.

For instance, if n = 7, then∑
i even

p(n− i(3i+ 1)/2) = p(7) + p(2) + p(0) = 15 + 2 + 1 = 18,

∑
i odd

p(n− i(3i+ 1)/2) = p(6) + p(5) = 11 + 7 = 18.

Proof of Theorem 4. Let a(i) = i(3i+ 1)/2. Define the map γ by the following rule:

for a partition λ : n− a(i) = λ1 + λ2 + · · ·+ λt,

γ(λ) =


λ′ : n− a(i− 1) = (t+ 3i− 1) + (λ1 − 1) + · · ·+ (λt − 1) if t+ 3i ≥ λ1

λ′ : n− a(i+ 1) = (λ2 + 1) + · · ·+ (λt + 1) + 1 + · · ·+ 1︸ ︷︷ ︸
λ1−t−3i−1

if t+ 3i < λ1.

It is not hard to see that γ is an involution, so we complete the proof.

Now, let us use three bijections that we showed above to prove Theorem 1.
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Proof of Theorem 1. First, fix σ1, σ2 ∈ O, and say |σ1| + |σ2| = M. Now, consider all

the partitions π1 + π2 + π3 of N − M with π1, π2 ∈ D, π3 ∈ D0 and `(π1) − `(π3) =

m−2(`(σ1)− `(σ2)) so that N = π1 +π2 +π3 +σ1 +σ2. By the bijective proof of Theorem

2, the excess of the number of partitions of N into an even number of parts in the form

N = π1 +π2 +π3 +σ1 +σ2, over those into an odd number of parts (with fixed σ1 and σ2) is

nonzero only when π1 = 1+ · · ·+t, t ≥ 0 and π2 = π3 = ∅ or π3 = 0+1++ · · ·+(−t−1),

t < 0, and π1 = π2 = ∅.
Thus, we only have to consider the partitions of the form

N = 1 + · · ·+ t+ σ1 + σ2, t ≥ 0, N = 0 + 1 + · · ·+ (−t− 1) + σ1 + σ2, t < 0,

where σ1, σ2 ∈ O and 2(`(σ1)− `(σ2)) = m− t. By the bijection described in Theorem 3,

each pair (σ1, σ2) corresponds to (`(σ1) − `(σ2))
2 + τ, where τ is a partition of N − t(t +

1)/2− (`(σ1)− `(σ2))
2 into even parts. Thus, each partition of N of the form

µ : N = t(t+ 1)/2 + σ1 + σ2, t ∈ Z, (7)

is bijectively associated with

µ′ : N = t(t+ 1)/2 + (`(σ1)− `(σ2))
2 + τ.

We consider three difference cases when m ≡ 0, 1 or −1 (mod 3).

Case 1: m = 3n, n ∈ Z.
Let `(σ1)− `(σ2) = r, then t+ 2r = 3n and `(µ) = t+ `(σ1) + `(σ2) ≡ t+ r ≡ n− r

(mod 2). Also,

µ′ : N =
t(t+ 1)

2
+ r2 + τ =

n(3n+ 1)

2
+ 3(n− r)2 + (n− r) + τ. (8)

So, ifN = n(3n+1)/2, then we have n = r = t and |τ | = 0. Thus, the only possibilities

for σ1 and σ2 for µ are σ1 = 1 + 3 + · · · + 2n − 1 and σ2 = ∅ if n ≥ 0, and σ1 = ∅ and

σ2 = 1+3+ · · ·+(−2n−1) if n < 0, since n = r = `(σ1)− `(σ2). Considering `(µ) ≡ 2n

(mod 2), we can see that the excess of the number of partitions of N into an even number of
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parts over those into odd number of parts in the form satisfying the condition of our theorem

is 1.

Now, suppose N 6= n(3n + 1)/2. Then, L := N − n(3n + 1)/2 ≥ 1 by (8). By the

bijective relations between the solutions of µ and µ′, the excess of the number of solutions of

µ with `(µ) even over those with `(µ) odd is equal to the excess of the number of partitions

of L− (3(n− r)2 +(n− r)) into even parts with n− r even over the number of partitions of

L− (3(n−r)2 +(n−r)) into even parts with n−r odd since `(µ) ≡ n−r (mod 2). Using

the fact that the number of partitions of a number a into even parts is equal to the number of

partitions of a/2 and the bijection described in Theorem 4, we complete the proof of Case 1,

because the previously described excess is equal to 0.

Case 2: m = −3n− 1, n ∈ Z.
If `(σ1)− `(σ2) = r, then t+ 2r = −3n− 1, `(µ) ≡ t+ r ≡ n+ r + 1 (mod 2) and

µ′ : N =
t(t+ 1)

2
+ r2 + τ =

n(3n+ 1)

2
+ 3(n+ r)2 + (n+ r) + τ.

Similarly, if N = n(3n + 1)/2, then we have n = −r = −t − 1 and |τ | = 0. Since

|σ1| + |σ2| = N − t(t + 1)/2 = (t + 1)2 by (7) and `(σ1) − `(σ2) = t + 1, we have

σ1 = 1+3+ · · ·+2t+1 and σ2 = ∅ if t ≥ −1, and σ1 = ∅ and σ2 = 1+3+ · · ·+(−2t−3) if

t < −1.Considering `(µ) ≡ 2t+1 (mod 2),we complete the proof whenN = n(3n+1)/2.

By the same argument as in Case 2, we can also prove the theorem when N 6= n(3n +

1)/2. (The only difference is that `(µ) has the opposite parity of n+ r)

Case 3: m = 3n+ 1, n ∈ Z.
Similarly, letting `(σ1)− `(σ2) = r, we have t+ 2r = 3n+ 1, `(µ) ≡ t+ r ≡ n− r+ 1

(mod 2) and

µ′ : N =
t(t+ 1)

2
+ r2 + τ =

3n2 + 3n+ 2

2
+ 3(n− r)(n− r + 1) + τ.

Let L = N − (3n2 + 3n + 2)/2. Then, the excess of the number of solutions of µ with

`(µ) even over those with `(µ) odd is equal to the excess of the number of partitions of

L− (3(n−r)(n−r+1)) into even parts with n−r odd over those with n−r even, which is
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0, since (n−r)(n−r+1) = {−(n−r)−1}{(−(n−r)−1+1)}, and n−r and−(n−r)−1

has opposite parity. Note that L = 0 is not an exceptional case since (n− r)(n− r+ 1) = 0

when n− r = 0 or n− r + 1 = 0.
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