Chapter 1

REPETITIONS

1.1 WORDS AND LANGUAGES

Our first topic is repetitions of words. This is the oldest topic studied in for-
mal language theory, going back to the work of Axel Thue at the beginning
of this century. Thue’s results have been rediscovered many times in various
disguises. Before discussing the results themselves, we have to introduce
some notions and terminology needed throughout this book.

An alphabet is a finite nonempty set. The elements of an alphabet L are
called letters or symbols. A word over an alphabet I is a finite string con-
sisting of zero or more letters of L, whereby the same letter may occur several
times. The string consisting of zero letters is called the empty word, written
A. Thus, A, 0, 1, 010, 1111 are words over the alphabet £ = {0, 1}. The set of
all words (resp. all nonempty words) over an alphabet L is denoted by L*
(resp. L*). The set Z* is infinite for any L. Algebraically, Z* and L+ are the
free monoid and free semigroup generated by L.

The reader should keep in mind that the basic set L, its elements and
strings of its elements could equally well be called a vocabulary, words and
sentences, respectively. This would reflect an approach aiming at applica-
tions mainly in the field of natural languages. In this book, we stick to the
standard mathematical terminology introduced above.

If x and y are words over an alphabet L, then so is their catenation xy.
Catenation is an associative operation, and the empty word is an identity with
respect to catenation: xA\ = Ax = x holds for all words x. For a word x and a
natural number i, the notation x’ means the word obtained by catenating i
copies of the word x. By definition, x0 is the empty word A.

The length of a word x, in symbols |x |, is the number of letters in x when
each letter is counted as many times as it occurs. Again by definition, || =
0. The length function possesses some of the formal properties of logarithm:

ley| = |x| + |yl |¥'] = i|x],
for any words x and y and integers i = 0.
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A word x is a subword of a word y if there are words x| and x, such that
y = x,xx,. Furthermore, if x;, = \ (resp. x, = \), then x is called an initial
subword or prefix of y (resp. a final subword or a suffix of y).

Subsets of L* are referred to as (formal) languages over L. Thus,

L, = {a, ba, aaba, b5} and L, = {aP|p prime}

are languages over the alphabet L = {a, b}, the former being finite and the
latter infinite. A finite language can, at least in principle, be defined by
listing all of its words. Such a procedure is not possible for infinite languages:
some finitary specification other than simple listing is needed to define an in-
finite language. Formal language theory deals mainly with such finitary
specifications of infinite languages. We shall meet some classes of them later
on in this book.

The reader might find our terminology somewhat unusual: a language
should consist of sentences rather than of words, as is the case in our ter-
minology. However, as pointed out above, this is irrelevant and depends
merely on the choice of the basic terminology, and anyone who feels strongly
about it can rename the latter.

An operation of crucial importance in language theory is the operation of
morphism. A mapping h:L* — A¥*, where L and A are alphabets, satisfying
the condition

h(xy) = h(x)h(y), for all words x and y, (1.1)
is called a morphism. For languages L over L we define
h(L) = {h(w)|wisin L}.
(Thus, algebraically, a morphism of languages is a monoid morphism lin-
early extended to subsets of monoids.) Because of the condition (1.1), to
define a morphism 4, it suffices to list all the words 4(a), where a ranges over
all the (finitely many) letters of L.
Triples G = (I, h, w), where L is an alphabet, h:L* — L* is a morphism

and w is a word over L, are referred to as DOL systems. A DOL system G
defines the following sequence S(G) of words over L:

w = hO(w), h(w) = h'(w), h(h(w)) = h¥(w), h3(w), ... .
It also defines the following language

L(G) = {hiw)|i = 0}.
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Thus, a DOL system constitutes a very simple finitary device for language
definition. Languages defined by a DOL system are referred to as DOL lan-
guages. We shall discuss them later on in Chapter 5, and we will also explain
the abbreviation “DOL.”

An infinite sequence of elements of an alphabet L is called an w-word.
Thus, an w-word can be identified with a mapping of the set of nonnegative
integers into L. A very convenient way of defining some special w-words is
provided by DOL systems as follows. Consider a DOL system G = (E, h, w)
such that

h(w) = wx, wherex €L 1, (1.2)

that is, w is a proper prefix of #(w), and furthermore, h is nonerasing: h(a) #
A for every a in L. Then by (1.2)

h2(w) = wxh(x), h3(w) = wxh(x)h2(x)
and, in general,
hitl(w) = hi(w)hi(x) for alli = 0. (1.3)

The equation (1.3) shows that, for any i, h(w) is a proper prefix of hi*+1(w).
(Observe that hi(x) # N because h is nonerasing.) Consequently, an w-word o
can be defined as the ““limit” of the sequence ki(w),i =0, 1,2, ... . More
explicitly, « is the w-word whose prefix of length | hi(w)| equals Ai(w), for all
i. (The notions of a prefix and a subword are extended to concern w-words in
the natural fashion. A word x is a subword of an w-word « if o can be written
as x,xa, where x, is a word and «, is an w-word. If moreover x; = A, then x
is a prefix of a.) The w-word « obtained in this fashion is said to be generated
by the DOL system G.

1.2 THUE’S PROBLEM

The problem deals with repetitions occurring in words and w-words. A
word or an w-word over an alphabet L is termed square-free (resp. cube-free)
if it contains no subword of the form x2 (resp. x3), where x is a nonempty
word. A word or an w-word is termed strongly cube-free if it contains no sub-
word of the form x2a, where x is a nonempty word and a is the first letter of x.
Clearly, every square-free word or w-word is also strongly cube-free, and
every strongly cube-free word or w-word is also cube-free.

Thue’s problem consists of constructing square-free words, as long as
possible, over a given alphabet I, and preferably square-free w-words.
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Whenever this is not possible, strongly cube-free words or w-words should be
constructed, again as long as possible. Applications of Thue's problem arise
in a variety of quite different situations, some of which are mentioned in Ex-
ercises 6-9 below.

As an initial observation, it should be noted that Thue's problem becomes
easier (in a sense made precise below) if the cardinality of the alphabet I in-
creases. Intuitively, this provides more “leeway.” In particular, if T consists
of only one letter, then no word of length =3 is cube-free. If T consists of
two letters, then only very short words can be square-free, as seen in the
following lemma.

Lemma 1.1. No word of length =4 over an alphabet I with cardinality 2 is
square-free. Consequently, no w-word over L is square-free.

Proof. Let L consist of the letters @ and b. The only square-free words of
length 3 are

aba and bab (1.4)
because the other words of length 3
ad, a’b, ba?, b3, b2a, ab?

all contain either a2 or b2 as a subword. On the other hand, no matter in
what way another letter is added to one of the words (1.4), the resulting word
always contains one of the words a2, b2, (ab)?, (ba)? as a subword and, conse-
quently, is not square-free. o -

Let a be a word (resp. an w-word) over an alphabet L. A word a' of the
same length as « (resp. an w-word ') is called an interpretation of « if the
following condition is satisfied: whenever the ith symbol (counted from the
beginning) differs from the jth symbol in «, then also in a’ the ith symbol
differs from thejth symbol. Thus, botha,a,a;b,a4b, and a,a,a,a;a,a; are in-
terpretations of the word a3bab, whereas a;a;a3a4asa, is not an interpreta-
tion of a3bab, because the first and last letter in a3bab are different. Apart
from a possible renaming of the letters, every interpretation of a word or
w-word « is obtained by providing, for each letter a in «, every occurrence of
a with some lower index, where only a finite number of indices may be used.
Interpretations will be met also in Chapter 7 below.

Lemma 1.2. If a (a word or an w-word) is square-free, strongly cube-free or
cube-free, then so is every interpretation o’ of a.
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Proof. The assertion follows directly by the definition of an interpretation.
For instance, if ' has a subword of the form x2, then the subword occurring
in the same position in o must be of the form y2. O

Lemma 1.2 shows that if « is a square-free, (resp. strongly cube-free, cube-
free) w-word strictly over an alphabet L (meaning that all letters of I actually
occur in o) and L, is an alphabet of cardinality greater than that of L, then a
square-free (resp. strongly cube-free, cube-free) w-word strictly over I, can
be constructed from a.

Returning to Thue’s problem, it is obvious that if we are able to construct a
square-free (resp. strongly cube-free) w-word over an alphabet I, then we can
also construct arbitrarily long square-free (resp. strongly cube-free) words
over L. (The converse implication is not so obvious; however, it turns out to
be true as we shall see below.) Consequently, in view of Lemma 1.1, the best
results we can hope for are the solutions to the following two problems.

(i) Construct a strongly cube-free w-word over an alphabet with cardinality
2. (Strong cube-freeness problem.)

(ii) Construct a square-free w-word over an alphabet with cardinality 3.
(Square-freeness problem.)

By Lemma 1.2, solutions to problems (i) and (ii) imply that we can con-
struct strongly cube-free (resp. square-free) w-words, as well as arbitrarily
long words with this property, over any alphabet with cardinality =2 (resp.
=3).

We shall now give a solution to problems (i) and (ii). Readers who are able
to find a solution themselves might have been forerunners of formal language
theory like Axel Thue.

1.3 SOLUTION TO THE STRONG CUBE-FREENESS PROBLEM

Consider a DOL system G = ({a, b}, h, a), where the morphism 4 is de-
fined by
h(a) = ab, h(b) = ba.

Then the first few words in the sequence S(G) are
a, ab, abba, abba baab, abba baab baab abba, ... .
In general, for any i = 1, the (i + 1)st word w; in the sequence S(G) satis-

fies
Wi = ww;’, (1.5)
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where we denote by x' the word obtained from the word x by interchanging a
and b.

We prove (1.5) inductively, observing first that it holds for ;i = 1. Assum-
ing (1.5) for a fixed value i/, we complete the inductive step as follows:

Wit2 = h(wiyy) = h(ww;") = h(w)h(w;")
= wipthW") = wip wiy ',

where the last equation follows because
h(x") = (h(x))’
holds for any word x, by the definition of 4.

Denote now by « the w-word generated by G. Our aim is to show that « is
strongly cube-free. Observe that (1.5) provides a convenient way of writing
down an arbitrarily long prefix of «. Following the grouping due to (1.5), we
obtain

a b ba baab baababba baababbaabbabaab ... . (1.6)

Thus, (1.6) shows the beginning of . The empty spaces are only used to indi-
cate the position where a new w; ' has been added.

We need some properties of the w-word « for the proof of the main result.
It will be useful to consider « also in the form

o =C1C)3 ..., (1.7)
where each c; equals either a or b.

Lemma 1.3. Neither a3 nor b3 occurs as a subword in . Neither ababa nor
babab occurs as a subword in «. Consequently, every subword x of « such
that |x| = S contains either a2 or b? as a subword.

Proof. Consider the first sentence. If either a3 or b3 occurs as a subword in
«, then it occurs as a subword in some w;. But this is impossible because
w; = h(w;_,) and, consequently, w; is obtained by catenating words ab and
ba in some order.

Consider the second sentence. Assume that ababa occurs as a subword of
«a, starting with the jth letter of a. Thus, in the notation of (1.7),
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€jCj41Cj+2Cj+3Cj+4 = ababa. (1.8)
We choose an i large enough such that
lw;| =j + 4.

Thus, the occurrence (1.8) is already in w;. We use again the relation w; =
h(w;_,) and conclude that either a3 or 53 occurs as a subword in w;_,, de-
pending on whether j in (1.8) is odd or even. But this cannot happen because
of the already established first sentence of our lemma. In the same way (or
arguing by symmetry) we see that babab does not occur as a subword of a.

Finally, the last sentence is a consequence of the second sentence because,
apart from the words ababa and babab, every word of length S over {a, b}
contains a2 or b? as a subword. O

Lemma 1.4. Assume that a2 or b2 occurs as a subword of «, starting with
the jth letter of o. Then is even.

Proof. We use the notation of (1.7), assuming that c;c; | equals either a2 or
b2. We choose again an i large enough such that

|w,~| Zj+l,

and make use of the relation w; = h(w;_,). Because of this relation, j being
odd implies that c;c; | equals either &(a) or h(b). Since neither one of the lat-
ter equals a? or b2, we obtain the lemma. O

We are now in the position to establish our main result.
Theorem 1.5. The w-word « is strongly cube-free.

Proof. Arguing again indirectly, we assume that xxc, where c is the first let-
ter of x, is a subword of « and, furthermore, no word yyd, where d is the first
letter of y and |y| < |x], is a subword of c. (In other words, xxc provides the
shortest possible counterexample to Theorem 1.5.) If | x| equals 1 or 2, one
of the words a3, b3, ababa, babab occurs as a subword of «. Since this is im-
possible by Lemma 1.3, we conclude that

x| =¢=3. (1.9)

Assume that the occurrence of xxc we are considering starts with the jth
letter of o. Hence, in the notation of (1.7),
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i+ v Cipa = XxC. (1.10)

By Lemma 1.3 and (1.9), either a2 or b2 occurs as a subword in xx. This
implies that either a2 or b2 occurs twice as a subword in xxc. Indeed, a2 or b2
must occur as a subword either in x or else in xc. In both cases, it occurs
twice as a subword in xxc.

We can now conclude by Lemma 1.4 that |x| = ¢ is even. For if ¢ is odd
then at least one of the occurrences of a2 or b2 in xxc must start with the kth
letter of «, for some odd k. But this is impossible by Lemma 1.4.

Consequently, t = 2u for some natural number u. We consider (1.10),
assuming first that j is even and, hence, j = 2. We now apply our standard
technique, choosing a large enough / (such that |w;| = j + 2¢) and making
use of the relation w; = h(w;_,). We conclude that

q,-_,q,-=aborq,-_,cj=ba. (1.11)
This implies that also
Ci—1+:Cj+, =@borc,_ 4,ciy, = ba (1.12)

because j + ¢ is even. By (1.10), ¢; = c;4, which together with (1.11) and
(1.12) gives the result ¢;_; = ¢;_;+,. Consequently,

¢, =c 4+ foreverynwithj — 1 <n <j+1¢. (1.13)

For 0 < n =<, the word ¢, 4 3,¢;+2, €quals either /(a) or h(b). This follows
because of the relation w; = h(w,_,) and because j — 1 is odd. We now infer
by (1.13) that w;_, contains a subword yyd, where d is the first letter of y and
|y| = ¢/2 = u. Hence, also « contains yyd as a subword. But this contradicts
the choice of x.

Thus, there remains the case that in (1.10), j is odd. We argue as before,
extending now (1.10) to the letter ¢, +, instead of ¢;_,. Since both j + ¢
and j + 2¢ are odd, the words c;,c;+,4+; and Ci+2(Cj+2.+1 are of the form
h(a) or h(b), analogously with (1.11) and (1.12). Hence, the equation ¢;;, =
¢;+2 gives us the equation ¢; 4,4 = ¢;+2,+. Consequently,

¢, =c,4+ foreverynwithj <n <j+:¢+1.

From this we obtain exactly as above the result that o contains a subword
yyd, where d is the first letter of y and |y| = u, contradicting again the
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choice of x. We have shown that « is a strongly cube-free w-word over the
alphabet {a, b}, completing the proof of Theorem 1.5. a

1.4 SOLUTION TO THE SQUARE-FREENESS PROBLEM

We now turn to the discussion of the problem of constructing a square-free
w-word over an alphabet with cardinality 3. In fact, we are able to reduce the
entire matter to the already established Theorem 1.S. This becomes possible
by applying a technique very common and useful in formal language theory.
The technique consists of grouping several letters into one. By this technique,
we obtain first the following lemma.

Lemma 1.6. There exists a square-free w-word 8 over an alphabet with four
letters.

Proof. Consider the w-word a of Theorem 1.5. We define a new alphabet I,
by

L, = {laal, [ab], [ba], [bb]}.

Using the expression (1.7) for o, we now define an w-word
B=ddyd;... (1.14)

over the alphabet L, by the condition

d; = [cjcj4 ] for everyj = 1.

Assume y? occurs as a subword in 3 where
y=digy oo djry =digpy - diggn t 2 1
Consequently,
lej16542] - -+ [ejaiCirert] = [ejaer1Cirera] - - [ejr2eCi42041]-

This means that Cit1 = Cite41 = Cit2e+1 and that Ci+n = j+t+n forl =<
n < t. Consequently,

(Cj41 -+ Circiny
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occurs as a subword in «, contradicting Theorem 1.5. Hence, 3 is square-
free. O

We now strengthen Lemma 1.6 to the result we are looking for. For this
purpose it will be convenient to abbreviate the letters of L, as follows:

[aa) = 1, [ab] = 2, [ba] = 3, [bb] = 4.
In this notation, the beginning of 3 is
B = 2432312431232432312324312432312. ..

(cf. 1.6). By the definition of 3, the letter 1 must be preceded by 1 or 3.
However, if 1 is preceded by 1 then a3 occurs as a subword in «, which is im-
possible by Lemma 1.3. Hence, 1 is always preceded by 3 in 3. The other
parts of the following lemma are established in exactly the same way.

Lemma 1.7. Every occurrence of the letter 1 in 3 is preceded by an occur-

rence of 3 and followed by an occurrence of 2. Every occurrence of the letter 4

in 3 is preceded by an occurrence of 2 and followed by an occurrence of 3.
We are now ready for the main result.

Theorem 1.8. There exists a square-free w-word y over an alphabet with
three letters.

Proof. Consider the alphabet £, = {1, 2, 3}. The w-word 7y is obtained
from 3 by replacing 4 with 1. Thus, the beginning of v is

v = 2132312131232132312321312132312. .. .

We will show that v is square-free.
Assume the contrary: xx occurs as a subword in v, where x is a nonempty
word. This implies that 3 contains a subword y,y, such that

il = ly2l = |x| =

and, furthermore, y, and y, become identical when every occurrence of the
letter 4 is replaced by the letter 1.

We observe first that ¢ = 2 because, by Lemma 1.7, none of the words 11,
14, 41, 44 occurs as a subword in 8.
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Let
Y =digy oo iy Y2 = djpegy oo it

where the notation of (1.14) is used. Thus, for every n satisfying 1 < n < ¢,
djy, = d;1,+, with the possible exception of the case where one of the num-
bers d;,,and d;,,equals 1 and the other equals 4. We shall prove that this
exceptional case is, in fact, impossible.

Consider first a fixed value of n satisfying 1 < n < ¢t. By Lemma 1.7, if
d;y, equals 1 (resp. 4), then d; ., 4, equals 2 (resp. 3). Hence, also d; 4, +1+,
equals 2 (resp. 3), by our assumption concerning y, and y,. Thus, another

application of Lemma 1.7 gives us the result

dj+" = dj+n+t whenever 1 <n <t. (1.15)

Second, consider the letters d;, and d;,,. Instead of successors, we use
now predecessors in our argument based on Lemma 1.7. If d;,, equals 1
(resp. 4), then d; ., equals 3 (resp. 2). Consequently, also d;,,—, equals 3
(resp. 2). Hence, d;4, = djy3, which combined with (1.15) shows that
(dj4+y ... d;4,)? occurs as a subword in 3, contradicting Lemma 1.6. Our
assumption about xx occurring as a subword in v is wrong, whence Theorem
1.8 follows. O

We still summarize our complete solution of Thue’s problem in the next
theorem.

Theorem 1.9. If L is of cardinality =3 then there exists a square-free
w-word over L. If L is of cardinality 2 then there exists a strongly cube-free
w-word over L but no square-free words over L with length exceeding 3.

We want to emphasize that the expression “‘there exists’ in the statement
of the previous theorem means, in fact, that the required w-word can be ef-
fectively constructed. By (1.5), we are able to compute any *‘digit” in «, 8 or
v. With very few exceptions, this is generally true in formal language theory:
proofs of theorems give a method of effectively constructing the objects in-
volved.

1.5 OVERLAPPING

By definition, a word or an w-word w is square-free if it does not contain a
subword of the form xx, where x is nonempty. It is still conceivable that w
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could contain two ‘“‘overlapping” occurrences of x, i.e., a subword xy = zx,
where

L=<|y|=]z| <|x|. (1.16)

If this does not happen, we say that w is overlap-free.

The following characterization result shows, among other things, that the
square-free and strongly cube-free w-words considered above are also
overlap-free.

Lemma 1.10. A word or an w-word w is overlap-free if and only if it is
strongly cube-free.

Proof. Assume w is not overlap-free. Hence, w possesses a subword xy = zx
such that (1.16) holds. Let a be the first letter of z. By our assumptions, x =
zx, where the first letter of x, is also a. Hence, zza is a subword of w. Conse-
quently, w is not strongly cube-free.

Conversely, assume that w is not strongly cube-free. Hence, w possesses a
subword z,z,a, where a is the first letter of z,. Denoting z, = az,, we see that
azyaza is a subword of w. We now choose

X = az,a,y = z,a, z = az;.

Then xy = zx is a subword of w and, moreover, (1.16) is satisfied. This im-
plies that w is not overlap-free. O

Thue also considered a notion stronger than square-freeness. He called an
w-word over I with cardinality n “‘irreducible” if, whenever it contains a sub-
word xyx where x is nonempty, then |y| = n — 2. Thus, for n = 3, this no-
tion coincides with the notion of square-freeness. Given any alphabet I, an
irreducible w-word over L can be constructed. (Observe that for n < 2 every
w-word is trivially irreducible.)

The condition of two occurrences of x lying apart can be further strength-
ened by requiring that the length of the word y separating the occurrences is
bounded from below by | x|. Along these lines, the following result can be ob-
tained.

Theorem 1.11. If I is of cardinality =3, there is an w-word w over L such
that, whenever xyx with x = \ is a subword of w, then |y| = V3 |x|.

The proof of Theorem 1.11 is given in [De]. A w as required is generated
by the DOL system ({a, b, c}, h, a), where
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h(a) =abc ach cab c¢ bac bca cba,
h(b) = bca bac abc a cha cab ach,
h(c) =cab cba bca b acb abc bac.

It is also discussed in [De] why | #(a) | cannot be smaller and shown that the
constant ¥3 is the best possible in the following sense. Assume that the car-
dinality of L equals 3. Then every word over L with length =39 contains a
subword xyx with the properties x # A\ and |y| < V3 |x]|.

1.6 DOL SYSTEMS AND «-WORDS

We conclude this chapter with some further examples of square-free
w-words. At the same time, some general remarks about w-words generated
by DOL systems will be made.

Observe first that the w-word « of Theorem 1.5 is also generated by the
DOL system

G, = ({a, b}, h, abba),where h(a) = ab, h(b) = ba,
as well as by the DOL system
G, = ({a, b}, hy, a), where h(a) = abba, h\(b) = baab.

This is a special case of the following more general result, the proof of which
is immediate by the definitions.

Lemma 1.12. Assume that § is the w-word generated by the DOL system
(X, h, w) and thati/ = 1 andj = O are integers. Then 6 is generated also by
the DOL system (I, k¢, hJ(w)).

It may also happen that the original DOL system does not generate an
w-word, but there still exist numbers i and j such that the DOL system (X, A/,
hi(w)) generates an w-word. An example is given in Exercise 14. In Exercise
15 the problem of finding out whether or not such numbers exist is discussed.

In general, it is not easy to tell whether or not two DOL systems G, and G,
(satisfying the additional condition for the generation of w-words) generate
the same w-word. This problem is closely linked with the DOL sequence
equivalence problem considered below in Chapter S. If G; and G, are se-
quence equivalent (i.e., S(G;) = S$(G,)), then they generate the same
w-word. The converse is not necessarily true, as exemplified by Lemma 1.12.

It is difficult to decide whether or not an w-word defined by some other ef-
fective method can also be defined by a DOL system. This can be stated as a



14 Repetitions

precise decision problem for each class of effective methods defining
w-words.

For instance, the w-word B of Lemma 1.6 was not originally defined by a
DOL system. However, 3 is generated by the DOL system ({1, 2, 3, 4}, &, 2),
where

h(1) = 2431, h(2) = 2432,
h(3) = 3123, h(4) = 3124.

No general method is known for deciding whether or not the w-word
generated by a DOL system G is square-free. In [Bel] such a method is given
for the case where the alphabet of G consists of three letters.

We say that a morphism £ preserves square-freeness if h(x) is square-free
whenever x is square-free. Clearly, the w-word 6 generated by the DOL
system (Z, h, w), where w is square-free and h preserves square-freeness, is
itself square-free (providing, of course, that the conditions for generating an
w-word are satisfied). For instance, Thue shows in [T2] that the morphism &,
defined by

h,(a) = abcab, h\(b) = acabcb, h(c) = acbcach

is square-free. Thus, the DOL system ({a, b, c}, h,, a) generates a square-
free w-word.

However, a DOL system (X, k, w) may generate a square-free w-word
although & does not preserve square-freeness. An example is provided by the
DOL system ({a, b, c}, h,, a), where h, is defined by

ha(a) = abe, hy(b) = ac, hy(c) = b.

It can be shown that the generated w-word is square-free. However, &, does
not preserve square-freeness because

hy(aba) = abcacabc.
EXERCISES

1. What is the number of subwords of a word w of length n, provided w contains no
two occurrences of the same letter? Determine an upper bound, as sharp as
possible, for the number of subwords in case the letters of w are not all distinct.

2. Consider the DOL system G = ({a, b}, h, a), where h(a) = b and h(b) = ab.
Show that the lengths of the words in the sequence S(G) constitute the Fibonacci
sequence.



