Two

I. The only other rookwise-connected antimagic square
is the “complement” of the one in Figure 2. Simply
change each digit to the difference between that digit and
10. The result is a square that can be obtained by spiraling
the digits in the same way as before, but taking them in re-
verse order:

987
216
345

One way to prove there are no other such squares starts
by observing that if the matrix is colored like a chessboard,
with white cells at the corners, the odd digits must be on
white, even digits on black. Digits 2 and 4 cannot be op-
posite because 3 would have to go between, and this
makes a rook path impossible. Either 8 or 6, therefore,
must be opposite 2. The path must start and end on white.
It takes only a few minutes to check the four essentially
different patterns for duplication of sums.

I had not seen an antimagic square before Dr. Matrix in-
troduced me to them. The earliest example I later found of
such a square is the order-3 square given in Sam Loyd and
His Puzzles (1928) as the answer to a puzzle on page 44.

239
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In Mathematics Magazine (Jan. 1951) Dewey Duncan
defined a heterosquare as a square in which no two rows,
columns, or diagonals (including “broken diagonals™) have
the same sum. (The order-3 square has four broken diago-
nals. Referring to the square shown in Figure 2, they are
the cells bearing the number triplets 1, 6, 4; 8, 2, 5; 3, 8,
6; and 2, 4, 7. Thus the antimagic square in Figure 2 is not
a heterosquare; for one thing, the third broken diagonal
adds up to 17, and so does the second column.) Duncan
asked for a heterosquare of order-3 and proof that no such
square of order-2 exists. It is easy to show that an order-2
is impossible. A proof that the order-3 also is impossible
was given by Charles F. Pinzka in Mathematics Magazine
(Sept.-Oct. 1965, pp. 250-252). Order-4 squares are pos-
sible; Pinzka gave two. Another proof of impossibility for
the order-3 was given by Prasert Na Nagara in the same
magazine (Sept.-Oct. 1966, pp. 255-256). Nagara also
found two “almost” heterosquares of order-3 in which all
sums but two were distinct.

J. A. Lindon, writing in Recreational Mathematics Mag-
azine (Feb. 1962), proposed searching for antimagic
squares in which the sums of the rows, columns, and main
diagonals (broken diagonals not considered) are not only
different but form a sequence of consecutive integers. A
summary of Lindon’s results, with some new material
added, appears in Joseph Madachy’s Mathematics on Va-
cation (New York: Scribner, 1966), pp. 101-110. No order-
2 square of this type is possible. Order-3 also is impos-
sible, although one can come close, as the following
square (from C. C. Verbeek’s Puzzel met Plezier, Amster-
dam, 1962, p. 155) shows:

268
791
534
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All eight sums are distinct, and only one diagonal sum, 22,
is outside the sequence.

Many order-4 and higher antimagic squares, with all sums
in consecutive order, were found by Lindon.

Charles W. Trigg, writing on “The Sums of Third Order
Anti-Magic Squares,” Journal of Recreational Mathemalics 2
(1969): 250-254, showed that the eight sums of an order-3
antimagic square cannot be in any arithmetic progression,
thus confirming Lindon’s conjecture that they cannot be con-
secutive. He also proved that the eight sums cannot all be
even.

In a note on “A Remarkable Group of Antimagic Squares,”
Mathematics Magazine 44 (1971): 13, Trigg examined the
eight patterns obtained by placing 1 in the center of the
three-by-three array, the sequence 3, 5, 7, 9 in the corners,
and the sequence 2, 4, 6, 8 in the side cells. “Remarkably,
whether the sequences run clockwise or counterclockwise,
each of the eight essentially distinct squares thus obtained 1s
antimagic.”

The complements of these eight squares are also an-
timagic. When the four broken diagonals are considered, it
turns out that each of the sixteen squares is also “almost het-
erosquare in having only two duplicate sums. Commenting
on problem 84 in the same magazine, 4 (1971):236-237.
Trigg has given a method that produces 108 order-3 arrays
that are almost heterosquare. The total number of distinct
order-3 antimagic squares, and the number of distinct order-
3 almost heterosquares, remain unknown.

II. The equation asked for is:
36% + 372 + 382 + 392 + 402 = 41% + 422 + 432 + 442

I am indebted to Russell L. Linton, Oakland, California,
for pointing out in a letter that the first integer in the series
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of such equations is obtained by the formula n(2n +1),
where n is the number of terms on the right side of the
equation. Thus, to write the next example, which has five
terms on the right, we substitute 5 for n to obtain
5(10+1)=>55. We can immediately write:

552+ 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652

A discussion of this series, “Runs of Squares,” by T. H.
Beldon, appeared in the Mathematical Gazette (Dec.
1961, pp. 334-335).

The series has a trivial analogy with the following
first-power series:

1+2=3
4+5+6=T7+8
9+10+11+12=13+14+15

III. The three-symbol chain problem has a fascinating
history that begins with a two-symbol chain first discov-
ered by the Norwegian mathematician Axel Thue and de-
scribed by him in 1912. Begin with 01. For the 0, substi-
tute 01, and for the 1, substitute 10. The result is a chain of
four digits: 0110. Repeating this procedure, changing each
0 to 01 and each 1 to 10, produces the chain 01101001. In
this way we can form a chain as long as we wish, each step
doubling the number of digits and forming a chain that
starts by repeating the previous chain. This sequence of
symbols, called the Thue series, has the remarkable prop-
erty that no block of one or more digits ever appears three
times consecutively. The chain may “stutter” once, but
whenever this occurs, regardless of the size of the block
that repeats, the very next digit is sure to be the wrong one
for a third appearance of the block.

Max Euwe, a former world chess champion, was among
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the first to recognize that the Thue sequence provides a
method of playing an infinitely long game of chess. The
so-called German rule for preventing such games declares
a game drawn if a player plays any finite sequence of
moves three times in succession in the same position. Two
players need only create a position in which each can
move either of two pieces back and forth, regardless of
how the other player moves his two pieces. If each now
plays his two pieces in a Thue sequence, neither will ever
repeat a pattern of moves three times consecutively.

From the Thue series it is easy to derive a three-symbol
chain that solves Dr. Matrix’s problem. First, we transform
it to a chain of four symbols by writing 0 under every 00
pair, 1 under every 01 pair, 2 under every 10 pair, and 3
under every 11 pair:

Thue series: 01101001
Four-symbolchain: 1 3 2 1 2 0 1

This infinite four-symbol chain has the property that no
finite block of digits ever appears twice side by side. It can
now be transformed to a three-symbol chain, with the
same property, by replacing every 3 with a 0:

Four-symbol chain: 1321201
Three-symbol chain: 1 0 2 1 2 0 1

This solution to the three-symbol problem was given by
Marston Morse and Gustav Hedlund in an important 1944
paper, “Unending Chess, Symbolic Dynamics and a Prob-
lem in Semigroups,” Duke Mathematics Journal 11
(1944):1-7. There were earlier solutions (including one by
the Russian mathematician S. Arshon in 1937) and many
later ones. John Leech gave this solution in “A Prob-
lem on Strings of Beads,” Mathematical Gazette 41
(1957):277-278:
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Consider the following three blocks of digits:
0121021201210
1202102012021
2010210120102

The digits in these blocks are so arranged that if we substi-
tute the three blocks for the three digits (replacing 1 with
one block, 2 with another, 3 with the third) in any stutter-
free chain (e.g., any one of the three blocks), the resulting
chain will also be stutter-free. In this longer chain we can
now substitute blocks for digits once more to obtain a still
longer chain, and so on ad infinitum.

It is not possible to construct shorter palindromic blocks
(blocks that are the same backward as forward) that can be
used in this way, but shorter asymmetric blocks are pos-
sible. Allan Beek sent me a similar solution using the fol-
lowing asymmetric blocks of eleven digits each:

12313231213
12321312132
12321323132

It is not known if there is a set of three shorter blocks
that provides a proof of this type.

The three-symbol chain furnishes a way of evading the
rule for drawn chess games even if the rule is strength-
ened by declaring a game drawn if a finite sequence of
moves occurs only twice in succession. Each player simply
moves three pieces in a pattern given by the three-symbol
chain.

There are other ways of generating the Thue series than
the one explained above. In 1961 Dana Scott sent me the
following. First write the sequence of integers in binary
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form: 0, 1, 10, 11, 100, 101, 110, 111, 1000 . . . Next re-
place each number with 1 if it contains an odd number of
1I’s, and with O if it contains an even number of 1’s. The
result, surprisingly, is the Thue series: 011010011 . . .

A method of transforming the Thue series directly to a
three-symbol solution of Dr. Matrix’s problem was ex-
plained in 1963 by C. H. Braunholtz, “An Infinite
Sequence of Three Symbols with No Adjacent Repeats,”
American Mathematical Monthly 70 (1963):675-676. In
the Thue series the number of 1’s between any 0 and the
next 0 is either 0, 1, or 2. There are two 1’s between the
first and second 0, one 1 between the second and third 0’s,
none between the third and fourth, and so on. The
numbers of these 1’s, as we proceed from 0 to 0, form a
three-symbol infinite series, 2102012 ..., with the
required property.

P. Erdos proposed the following three-symbol chain
problem that is the same as the one given by Dr. Matrix
except that two blocks of digits are now considered “iden-
tical” if each symbol appears in them the same number of
times. For example, 00122 =02102 because each contains
two 0’s, one 1, and two 2’s. The largest possible sequence
that does not have two “identical” blocks side by side is
one of seven digits, e.g., 0102010. It is not yet known if
there is an infinite four-symbol chain with this property.

Other references on the Thue series and the three-sym-
bol problem include:

Marston Morse, “A Solution of the Problem of Infinite
Play in Chess,” Abstract 360, Bulletin of the American
Mathematical Society 44 (1938):632.

D. Hawkins and W. E. Mientka, “On Sequences Which
Contain No Repetitions,” Mathematics Student 24
(1956):185-187.
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G. A. Hedlund and W. H. Gottschalk, “A Character-
ization of the Morse Minimal Set,” Proceedings of the
American Mathematical Society 15 (1964):70-74.

Richard A. Dean, “A Sequence Without Repeats,” Amer-
ican Mathematical Monthly 72 (1965):383-385.

P. A. B. Pleasants, “Non-Repetitive Sequences,” Pro-
ceedings of the Cambridge Philosophical Society 68
(1970):267-274.

T. C. Brown, “Is There a Sequence of Four Symbols in
Which No Two Adjacent Segments Are Permutations of
One Another?” American Mathematical Monthly 78
(1971):886-888.

R. C. Entringer, D. E. Jackson, and J. A. Schatz, “On
Nonrepetitive Sequences,” Journal of Combinatorial
Theory, Series A, 16 (1974):159-164.

IV. The number 102564 quadruples in size if the 4 is
moved from the back to the front, 410256; therefore, Miss
Toshiyori’s telephone number is 1-0256. Puzzles of this
type are easily solved by a kind of multiply-as-you-go tech-
nique explained in Figure 37.

After mastering this method, readers may wish to tackle
the following three problems:

1. What is the smallest number ending in 6 that be-
comes six times as large when the 6 is shifted from the end
to the front? (Warning: The number has 58 digits!)

2. Find the smallest number beginning with 2 that tri-
ples when the 2 is moved to the end.

3. Prove that there is no number beginning with the
digit n that increases n times when the first digit is moved
from the front to the end, except in the trivial case where n
is 1.

Readers interested in further explorations of problems of
this type, in which digits are moved from one end of a



