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to apply an analogy of the method used in sec. 4.5. We shall give
only a brief description.

If y is a positive number, then ¢(y) will denote the volume of
that part of the cube — 1<% <1, ..., —1 <%, <1, the
points of which satisfy A(x1, ..., x4) > — 3y2 Then we have

F(t) =;,7 evdgly),

and so the problem has been reduced to a question about a single
integral. Usually ¢(y) will be differentiable, and ¢’(y) ~ ny®-1D-tV,,
(y — 0), where Vy, is the volume of the unit sphere in #-dimensional
euclidean space. For the main term we now obtain

F(t) ~nD-tV, fg—éty’yn—l dy = nD=¥V - 2" [(In)t-in  (t—>o00).
0
As Vy = #tn/I'(3n + 1), this gives the same result as (4.6.2).

4.7. An application

We shall discuss an instructive example of the multidimensional
Laplace method. We consider the sum

2n
(4.2.1) S(s,m) =3 (— 1)k+n (2”)8,
k=0 k

where s and # are positive integers. It is well-known that S(1, #)=0,
S(2, n) = (2n)!/(n!)2, and a formula of Dixon1) gives S(3, n) =
= (3n)!/(n!)3. One of course expects similar formulas for larger
values of s, but no such formula is known. A simple method to
decide on the existence of such a formula is to determine the
asymptotic behaviour of S(s, #n) as n — co (s fixed) and to investi-
gate whether this corresponds to the behaviour of multiplicative
combinations of factorials. It will turn out that the asymptotic
formula for S(s, #) involves (cos 7z/2s)278. The number (cos 7/2s)28
is rational if s = 2 or 3. If s > 3, however, this is no longer true,
and it follows that (cos 7/2s)2s% does not occur in the Stirling for-
mulas for #n!, 2n!, 3n!, ... . Therefore, we cannot expect simple
extensions of the Dixon formula if s > 3.

Properly speaking, the discussion of S(s, #) belongs to Ch. 3. We

p. 13.
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are, however, in the situation described in sec. 3.11: the sum is
exponentially small compared to the largest term (i.e. the term with
k = n). This fact is easily verified in the cases s = 1, 2, 3, and for
general s it follows from our final result (4.7.4). (We notice that
the term with 2 = #, which we denote by ¢,, is asymptotically
(22%(7rn)—*)8). This means, roughly, that the Euler-Maclaurin
method (in the version of sec. 3.11, because of the alternating
signs) gives a result of the type

Sltn ~0+0-n"1+0n24 ...,

and possibly (by the method of sec. 3.10) that S/t, is exponentially
small, but we will not be satisfied with a mere upper estimate.
Moreover, in this case, the terms are, considered as functions of the
summation variable %, quite awkward, and the Euler-Maclaurin
analysis becomes involved. For these reasons it is worth while to try
other explicit expressions for S. One possibility is used below,
another one (not restricted to the case that s is an integer) will be
used in sec. 6.4.

It is easily seen that the sum S(s, #) is equal to the coefficient of
210290. . . 2,0 in the product

(—D» (1 + 21)2” 1+ 32)211...(1 -+ zr)2n{1_(zl...zr)—l}2n’

where r = s — 1.
As S5(1,n) = 0 is trivial, we henceforth assume s > 2, r > 1.
By Cauchy’s formula we have

S(r~+ 1,n) = (— D)22m)r [ ... [(1 + 21)2%.-- (1 + z,)2n.
Al — (21 27) 7127 (217 d2y . . 27 Md2y),
where the integrals are taken along the unit cicles in the complex

z-planes.
On substituting z; = exp(2/gp;) we obtain

(4.7.2) S + 1, n) = 22rntng-r.
i in
f ... [{cos @1---cos @rsin(p1 + ... + @r)}2"de1. . .dey,
—ir —in

and to this multiple integral we can apply the Laplace method. We
put
G(p1, ..., pr) = cOS @1---COS @ Sin(g1 + ... + @¢),
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and our first question concerns the extreme points of G. As G = 0
on the boundary of the cube
—‘%”S (PIS %ﬂ, ""_'lz‘ng ¢1‘S %ﬂ,

whereas G takes both positive and negative values inside the cube,
the boundary can be neglected. As to the inner points, we remark
that G has continuous partial derivatives, and so we only need to

consider points where 0G/op; = ... = 0G/dp, = 0. Excluding
points where G = O, we have, if j =1, ..., 7,

(4.7.3)  0G/og; = {— tan g; + cot(p1 + ... + @n)}-G.

Hence our condition implies that tan ¢; = ... = tan ¢,. The ¢
being restricted to the interval (— 4=, ) it follows that all ¢; are
equal, 1 = ... = @r = a, say. We obtain cot ra = tan «, and so

o + ra = }m + km, where % is an integer. In other words o =wx/2s,
where s = 7 + 1, and » is an odd integer, |v| < s. The value of G
in such a point is

G(a, ..., o) = (cos &) sin (ro) = 4 (cos o)S.
So there are two absolute maxima of G2, corresponding to y=-1
and v = — 1. These are «'= f and a= — f3, respectively, where
B = m/2s. It is sufficient to consider only one of them, o« = + g,
say. For, the integral in (4.7.2) can be split into two equal parts,
according to @1 + ... + ¢ > 0o0r <O.
We shall write, in a neighbourhood 2 of (8, ..., f),

Gl - r) =GB, ..., B) exp h(f + %1, ..., B + %),

and we have to deal with

2f ... [exp(2nh(B + %1, ..., B + %y))dx1. . .d%y,
the integral being extended over a neighbourhood £’ of (0, ..., 0).
As G has continuous partial derivatives of all orders, we have a
multiple Taylor expansion for 4 (cf.(4.6.1)). As G is maximal at
%1 = ... =% =0, and as # = 0 at that point, the constant term
and all linear terms vanish:
r r
h‘(ﬁ—*'xlr :ﬂ+xr) = —% E Z aifxix1+ vy
i=1j=1

where ay = —(0/0p;) (9/99;) (log G), evaluated al % = ... =
= xr = 0.
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From (4.7.3) we infer

ayy = (9/0@1) {tan @ — cot(p1 + ... + @r)} =
= 0y cos 2 @5 + sin~2(p1 + ... + @r) = (045 + 1) cos—2(m/2s),

for at g1 = ... =¢@r=m/2s we have sin(p1+ ... + @) =
= sin(rz/2s) = cos(n/2s). Here &y is the Kronecker symbol:
8y =11f ¢ =4, 6y =0 it ¢ £ 4. The determinant of the matrix
(1 4+ 6g) (¢,7 =1, ..., 7) has elements 2 in the main diagonal, and
all other elements are 1. Its value equals s (the order of the matrix
is 7), which easily can be shown by induction. It can also be derived
from eigenvalue theory: the numbers 1 and 7 + 1 are obviously
eigenvalues, and as subtraction of the unit matrix from the given
matrix leads to a matrix of rank 1, the multiplicity of the eigen-
value 1 equals » — 1. Therefore, there are no other eigenvalues. The
determinant equals the product of the eigenvalues, whence the
determinant equals » + 1.

The matrix (1 + d4) is positive definite, for it is the matrix of the
quadratic form

D S e (2 T I L M L)

We are now in a position to apply (4.6.2) and (4.6.3), and the
result is that S(s, #) is asymptotically equivalent to

22rnteng—12. (2m)¥D—*. (zn)—}r.{G(ﬁ’ e 5)}21;’
where D = s cos~2r(t/2s), G(B, ..., f) = cos? (z/2s). It results that
(4.7.4) S(s, n) ~ {2 cos(rm/2s)}2n8+5-122-8(7pp) 185~}
if » - co and if s is fixed (s =2, 3, ...).
As a verification we take s = 3. Then we find
S(3, n) ~ 330+ (27n)~1 (n — o0),
and since
(3n)!/(n)3 ~ (3n)3n+(2m)be—3n{nn+}(2m)te—n}-3,

this is in accordance with Dixon’s formula S(3, n) = (3n)!/(n!)3.

4.8. Exercises. 1. Prove the asymptotic equivalence
m
Sxtsin x dx ~ gnt2p-2 (n > o0).
0



