Chapter 11

The Prouhet—Tarry—Escott
Problem

A classical problem in Diophantine equations that occurs in many guises is the
Prouhet-Tarry-Escott problem. This is the problem of finding two distinct lists
(repeats are allowed) of integers [a1,...,ay] and [By,. .., B,] such that

a1+t an =P+ + B,
oi4- =448

ok 4. +ak =gt ot g
We will call this the Prouhet-Tarry—Escott Problem. We call n the size of
the solution and k the degree. We abbreviate the above system by writing
[e] =« [Bi]-

This problem has a long history and is, in some form, over 200 years old. In
1750-1751 Euler and Goldbach noted that

l[a,b,c,a+b+c]=2[a+ba+c,b+c].

A general solution of the problem for all degrees, but large sizes, came a century
later, in 1851, when Prouhet found that there are n**! numbers separable into
7 sets such that each pair of sets forms a solution of degree k and size n*. (See
Theorem 1 of Chapter 12.) Prouhet’s result, while the first general solution
of the problem, was not properly noticed until Wright [1959] took exception
to the problem being called the Tarry-Escott problem and drew attention to
Prouhet’s contribution in a paper called “Prouhet’s 1851 solution of the Tarry—
Escott problem of 1910.” More of the early history of the problem can be found
in Dickson [1952], where he refers to it as the problem of “equal sums of like
powers.”
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86 Chapter 11. The Prouhet-Tarry-Escott Problem

The Diophantine equation above can be reformulated as a question about
polynomials in two ways.

Theorem 1. The following are equivalent:

(a) ‘Za{:iﬁ{forj:l,...,k—l.
i=1 i=1
(b) deg(ﬁz—a, ﬁz——ﬁ,)gn—k.
i=1 i=1

Z 2% - Z 25,
i=1 i=1

It is the third form above that rephrases the Prouhet-Tarry-Escott problem
as a question on the vanishing of low-height polynomials.

@ (-DF

An ideal solution is one where the degree is 1 less than the size, which is the
maximum possible. An even ideal symmetric solution of size n is of the form

(£, .., £ 2] =n-1 [£B1,- -, £Bn/2]

and satisfies any of the following equivalent statements:

n/2 ] n/2 . n—2
(@ Def=)glfrj=1...,——

i=1 i=1

n/2 n/2

b  J[E-ed) - I (2> - 82) = C for some constant C.

=1 i=1

n/2 n/2
CHCEDUDMCEER B CES)
=1 i=1

Note that the third form of an even symmetric solution gives rise to a real
(cosine) polynomial on the boundary of the unit disk.

An odd ideal symmetric solution of size n and even degree n — 1 is of the
form

[a1,. .., a0} =n-1 [—ou,..., —an]

and satisfies any of the following equivalent statements:

n
@ Y ol=0forj=135,..,n-2

i=1

(b) H(z - o) - H z 4+ a;) = C for some constant C.

i=1

IR we

t=1

@ @a-2)7




Chapter 11. The Prouhet—Tarry-Escott Problem 87

In the third form above, an odd symmetric solution gives rise, on multiplication
by i, to a real (sine) polynomial on the boundary of the unit disk.

There is a trivial transformation on solutions. Any linear transformation
of a solution is a solution (a; = Aa; + B with A and B integers). Two such
solutions are called equivalent.

The following is a list of ideal solutions for sizes 2 through 12, excluding
11 where no solution is known. For each size it includes the smallest known
solution. Except for the case of size 4, the solutions are all symmetric. Exactly
two inequivalent solutions of size 9 are known, and exactly one inequivalent
solution of size 12 is known. For the rest of the known cases there are infinite
parametric families of inequivalent solutions.

[£2] =, [£1],
[-2,-1,3] =, [2,1,-3],
[~5,—1,2,6] =5 [—4,—2,4,5],
[-8,-7,1,5,9] =4 [8,7, -1, -5, =9),
[+1, £11,£12] =5 [+4, £9, +13),
[-50, —38, —13,—7, 24, 33,51] = [50, 38,13, 7, —24, —33, —51],
[£5, 14, £23, £24] =7 [£2, £16, £21, £25],
[-98, —82, —58, —34, 13, 16, 69, 75, 99)]
=4 [98,82, 58, 34, —13, —16, —69, —75, —99],
(174,148,132,50,8, —63, —119, —161, —169)]
=g [~174, —148, —132, —50, -8, 63, 119, 161, 169],
[+£99, +100, +188, +301, £313] =¢ [+71, +131, 180, =307, £308],
[£103, £189, £366, £452, £515] =9 [£18, £245, £331, 2471, £508],
[£151, £140, £127, £86, £61, £22] =;; [+148, 2146, £121, £04, +:47, +35).

The main problem of this section is the question of the size of minimal
solutions of the Prouhet-Tarry—Escott problem and specifically whether or not
ideal solutions exist:

P2. The Prouhet-Tarry—Escott Problem. Find a polynomial with in-
teger coefficients that is divisible by (2 — 1)® and has smallest possible length.
(That is, minimize the sum of the absolute values of the coefficients.)

Wright [1934] specifically conjectures that it is always possible to find ideal
solutions. This has interesting consequences for the so-called easier Waring
problem that is discussed in the next section. Heuristic arguments suggest that
Wright’s conjecture should be false. Counting arguments, as in the next section,
give solutions of degree n and size O(n?), and it is tempting to speculate that
this is essentially best possible. It is, however, intriguing that ideal solutions
exist for as many n as they do.
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Parametric Solutions

We now present parametric solutions of size 5, 6, 7, 8, and 10. The families of
solutions of size 6, 8, and 10 are all symmetric, and immediately (on replacing
t2 by t) give infinite families of solutions of size 3, 4, and 5 where all the o; are
squares.

Size 5. The following is a one-parameter example of size 5:
Fy:= (t+2m?) (¢ —1) (t+2m* —1) (t - 2m’* +1-m) (t—2m® +m+1)
— (t-2m?) (¢ +1) (t—2m? +1) (t+2m® =1+ m) (t+2m’ —m - 1).
This expands to
Fy == —4m3(m —1)(2m + 1)2m - )(m + 1) (2m* - 1).
The fact that the expansion is independent of ¢ proves, by the second criterion
of Theorem 1 (with z = t), that the example is correct.
Size 6. The following is a simple two-parameter example of size 6:
Fo:=(t*-(@2n+2m)*)( ~(nm +n+m— 3)%)(¢* — (nm — n — m — 3)?)
- (- (@n-2m)?)(* — (n—nm —m - 3)°)({ — (m—nm—n— 3)%).
On expansion, one sees that
Fy := —16nm(m — 1)(m+ 3)(m —3)(m +1)(n — 1)(n + 3)(n — 3)(n + 1).

It is possible to solve for symmetric solutions of size 6. (See C3.) This gives
the following three-parameter solution of size 6 (in nonsymmetric form):

2 a2—b2—b2—boby agbitasby—babi —b3—b] 2 a3—b2—b3—baby
3 as, 3 — as,

~bi+az—b2 ’ —bi+az—b2 193537 Thitaz—b2
ga§—bf—b§—-b2bx _ asb;+asba—baby —b2—b3 0
3 —bitaz—b2 —bi+az—b2 ’

a§+b2b1 —azb2—azby 2 dg—-b?—bg —baby G§+b2b1 —azbo—azh
= b b2 £ —_
5 |Y1.Y2s —bi+az—b2 ’3  —bit+as—b2 —bi+az—b2 ’

203—b2—b2—boby _ bo. 2 a2-bt3—bZ—b2by b
37 Zby+az—b2 273" —by+az—b2 if-

Size 7. The following gives a parametric solution of size 7. This is homo-
geneous in j and k, so it is really a one-parameter solution. This is a much
simplified version of a result of Gloden [1944]. He gives a four-parameter solu-
tion, but two of the parameters are extraneous. Chernick [1937] also gives such
a family. Let

Fy := (t — Ry)(t — R2)(t — R3)(t — Ra)(t — Rs)(t — Re)(t — Rr)
— (t + R1)(t + Ra)(t + Rs)(t + Ra)(t + Rs)(t + Re)(t + Rr),
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where

Ry = — (=852 + K* + %) (4> — kj + k),

Ry = (j + k)(j — k) (5° - 3kj + %) j,

Rj == (j — 2k) (% + kj — k%) kj,

Ry :=—(j — k) (4% — ki — k?) (=k + 2j)k,
Rs:= —(j — k) (=2k5° + j* = j2K* + k),

Re := (j* — 4ks® + 7°k% + 2K3%5 — k*) k,
Ry := (5% — 4k® + 55%k* — k) 5.
On expansion,
Fr = 2°k%(—k + 2§)(j — 2k)(j + k)
x (52 +kj — K*) (52 — kj — k%) (5 — 3kj + K?)
x (—35%k + k® + %) (5* — 4k5® + 55%K% — k)
x (=2k5% + 5% = 7°K% + B*) (5% — 4k5® + 52K + 2835 — k)
x (% = kj + k%) ( = k)?,
which is independent of ¢. If we take j := 2 and k := 3, for example, then
Fp = (t—7)(t—50)(t+24)(t + 33)(t — 13)(t + 51)(t ~ 38)
— (t + 7)(t + 50)(t — 24)(¢t — 33)(t + 13)(t — 51)(t + 38),

which expands to
F7 = 13967553600.

Size 8. The following is a (homogeneous) size 8 solution due to Chernick
(1937):
Roi= (- R) (2 - R (- B) ( ~ RY)
— (- BY) (& - BY) (2 - R) (£ - RY),
where

R; :=5m? + 9mn + 10n?,
R, :=m? — 13mn — 6n?,
R; := 7m? — 5mn — 8n?,
R4 == 9m? 4+ Tmn — 4n?,
Rs := 9m? + 5mn + 4n?,
Rg :=m? + 15mn + 8n?,
R; := 5m? — Tmn — 10n?,

Rs := Tm? + 5mn — 6n°.
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On expansion,

Fg = —10752mn(2n + m)(n + m)(2n + 3m)
x (n + 2m)(4n — m)(5n + 4m)(n — 2m)(3n + m)
x (n — m)(n + 5m) (30 + 2mn — 2m?) (n? + mn + m?).

Size 9. We know no parametric solution of size 9. Indeed, only two inequiva-
lent solutions are known. Both are symmetric, and they are the following:

[—98, —82, —58, —34,13, 16, 69, 75, 99]
=g [98,82, 58, 34, —13, —16, —69, =75, —99]

and

(174,148,132, 50, 8, —63, —119, —161, —169)
=g [—174,-148,-132, -50,—-8,63,119, 161, 169].

There are no other symmetric size 9 solutions of height less than 2000. (The
height is the entry of largest modulus.)
Size 10. There are two small size 10 solutions known. They are
[£99, £100, £188, 301, +313] =, [£71, 131, +180, £307, £308]
and
[£103, £189, £366, £452, £515] =¢ [+18, +£245, £331, £471, +508].

Otherwise, no symmetric examples of height less than 1500 exist.

The following size 10 example is originally due to Letac and is much simpli-
fied in Smyth [1991]. It constructs an infinite family of inequivalent ideal size 10
solutions based on rational solutions of an elliptic curve.

Let
Fo= (£~ B) (¢ - B) (¢ - B)) (¢ — ) (¢ - BY)
— (£ - RR) (¢ - BY) (2 — B) (£ - ) (¢ - Bb,),
where
R; := (4n + 4m), Ry := (mn+n+ﬁ1—11),
Rz := (mn-—n—m-11), R := (mn+3n—3m +11),
Rs := (mn - 3n + 3m + 11), Rg := (4n — 4m),
Ry :=(—mn +n—-m-—11), Rg :=(—mn—-n+m —11),

Ry := (—mn + 3n + 3m + 11), Ryp = (—mn — 3n — 3m + 11).
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On expansion of Fjo, the constant coefficient is a polynomial in n and m alone.
The rest of the expansion is divisible by the factor

m?2n? — 13n? + 121 — 13m>.

Thus, any solution of the above biquadratic gives a size 10 solution. One such
solution is given by n = 153/61 and m = 191/79. A second solution is given by
n = —296313/249661 and m = —1264969/424999. The first of these gives the
following solution:

[£12, +11881, £20231, +:20885, £23738]
=o [£436, £11857, £20449, £20667, £23750].

The above biquadratic is equivalent to the elliptic curve
y? = (z — 435)(z — 426)(z + 861)

and gives rise to infinitely many inequivalent solutions. See Smyth [1991].

Size 11. No solutions are known, and no ideal symmetric solutions with all
entries of modulus less than 2000 exist. See Borwein, Lisongk, and Percival [to
appear] and the last section of this chapter.

Size 12. The only known size 12 solution, found by Nuutti Kuosa and Chen
Shuwen, is

[£151,+140, £127, £86, £61, £22] =, [+£148, £146,+121, +94, =47, +35].

There are no other symmetric solutions with all entries of modulus less than
1000.

Searching for Solutions

At present there are no known methods for finding ideal symmetric solutions
of size 11 or higher to the Prouhet-Tarry-Escott problem other than massive
searches. Nevertheless, the required searches can be made significantly less mas-
sive than the naive approach. (See Borwein, Lisonék, and Percival [to appear].)

To begin with, ideal symmetric solutions of size 2n and 2n + 1 are de-
fined uniquely by n + 1 elements. In the case of a solution of even size, given
Qi,... 0ne1—k and Bi,. .., Bk, we note that as

1162 -t -T2 -8 =,

=1 =1

H(BJZ-—af)——0=Cforj=1,...,n,
=1
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and so
1 n n—k+1 .
= II B-eh)= I B-at) " forj=1,..k
i=n—k+2 i=1

which gives us k evaluations of the unique degree k — 1 polynomial with leading
coefficient 1/C and 100ts @p—+2, - - - , &n. These points can thus be interpolated,
and the resulting polynomial solved to yield the unspecified ;. The remaining
3; can be computed similarly. This reduces the dimension of the problem in the
even case from 2n ton + 1.

In an analogous manner, given @i, . . . , &nt1 Of an ideal symmetric size 2n+1
solution to the Prouhet-Tarry-Escott problem, we note that as

2n+l 2n+1
[[e+e)- [[e-a)=c,
i=l i=1
2n+1
H (@j+a;)=Cforj=1,...,n+1,

=1

and so
1 2n+1 n+1
C H (o +a;) = H(aj +a,-)“1 forj=1,...,n+1,
i=n+2 i=1

which again uniquely specifies a polynomial that can be interpolated and solved
to give the unknown a;. This reduces the dimension of the problem in the odd
case from 2n +1ton + 1.

In addition to reducing the search space from 2n or 2n + 1 dimensions to
n + 1 dimensions, we can reduce the search space further by considering the
modular properties of solutions. Each size of solution has associated with it a
set of primes that must divide the constant C (see C1). For odd sizes, if a prime
p divides C, then (subject to reordering of the a;) we must have a; =0 (mod p)
and agx + @241 = 0 (mod p), while for even sizes the equivalent requirement
is that o2 = % (mod p).

The best known approach to finding ideal symmetric solutions to the PTE
problem is thus to find all (n + 1)-tuples satisfying the divisibility criteria (for
the appropriate size), and test whether they extend to solutions of size 2n or
2n + 1.

The following searches were done using the method described above and
approximately 10'7 floating-point operations on 100 relatively fast PCs (by 2001
standards a large computation). The method lends itself to trivial parallelization
with essentially no communication needed between processors.

Size Search limit Result

9 2000 one (inequivalent) solution found
10 1500 two (inequivalent) solutions found
11 2000 no solutions found
12 1000 one (inequivalent) solutions found
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Introductory Exercises

El. Prove Theorem 1.

E2. Showthatif[a;,...,as]and [Bi,..., 5] is an ideal solution and is ordered
such that a; < as < --- < anand B € B2 < -+ < B, then a; # §; for any 1
and j and

< <h<orlag<fs<pfi<ag -
(where without loss of generality we assume that o1 < f1)-

Conclude that an ideal solution of the Prouhet-Tarry-Escott problem (in
the third equivalent form) is a polynomial of height at most 2. Conclude also
that k = n — 1 is best possible in the first theorem of this chapter.

E3. Show that for each prime p, the Prouhet-Tarry-Escott problem of size p
has nontrivial solutions mod p.

E4. Show that the parametric solutions of this section give rise to infinitely
many inequivalent solutions.

E5. There are various results concerning the divisibility of

n n

Cn = [J(z — cs) = [](z - 80,

i=1 i=1
where [@;] =n—1 [8;] is an ideal solution. Prove the following lemma.

Lemma. If [a;] =n—1 [B] is an ideal solution with Cn defined as above, then

= 'H(aj—ﬁi) = IHar‘HB,- = izid of ; Y= B
i=1 i=1 i=1

1Cnl = |T1(8 1)

for all j.

E6. Suppose

n

f(z):= Z 2% — Z 28
i=1

i=1

is divisible by
k

H(l—z"").

i=1

k
k! Hn,-
i=1

Show that

n n
k k

E :ai - § Bi .

i=1 i=1
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Computational Problems

C1. For fixed p, find ideal solutions of the Prouhet-Tarry-Escott problem mod
p. Show that the constant C in the second equivalent form of the problem is
divisible by a set of primes that depends only on p. For example, for p = 11, the
constant C is divisible by 2, 3, 5, 7, 11, 13, and 17. For p = 13, the constant C
would have to be divisible by all primes up to 31. (See Borwein, Lisonék, and
Percival [to appear] and Rees and Smyth [1990].)

C2. Find all symmetric solutions of sizes 1 through 5 in parametric form.

C3. Verify that it is possible to solve the even symmetric problem of size 6
in Maple (or equivalent). The following simple Maple code finds a parametric
solution to the even symmetric problem of size 6. (Actually, it is a translated
solution with ag = 0.)

PTE:=proc(n)
local i,j,k,S;
S:={seq(a[jl=al1}-aln+1-j],j=n/2+1..n),
seq(bljl=al1]-b[n+1-j],j=n/2+1..0)};
subs(S,{seq(sum(alil "k,i=1..n)-sum(b[i] “k,i=1..n),k=1..n-1)});
end;

The command solve(PTE(6)) gives the following as rational solutions of
size 6:

2
- _ _ _ a5—azbz+b1bz—a2b
{02—-02,171—bl,bs——be.,bz——z-—"—'3 1s 2

—by—bz+az ’
— 2a3—b2—b—b1bs as = —b2—by by +azby+azbz—b2
1= 37 b1 <bs+az U3 —b1—bz+a2 :

Show that the three-parameter solution of size 6 of this chapter (in nonsym-
metric form) is just a reworking of the above output.

Research Problems

R1. Find infinite families of ideal solutions of the Prouhet-Tarry—Escott prob-
lem of size 9 and size 12 or show they can’t exist.

R2. Find an ideal solution of size 11 or any size greater than 12.

R3. Show for some n that no ideal solutions of the Prouhet—Tarry-Escott
problem exist.
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