18.317 Combinatorics, Probability, and Computations on Groups

Lecture 9

Lecturer: Igor Pak

Scribe: Christopher Malon

Generalized Random Subproducts

Today, we start to upgrade the Erdős–Rényi machine to show that "most" generating sets of size $O(\log |G|)$ have a mixing time of $O(\log |G|)$. We'll be more precise about this in due course.

First, we want to show that Erdős–Rényi is robust when we insert junk in the middle of our strings. Fix $\overline{g} = (g_1, g_2, \ldots, g_k) \in G^k$. On Monday, we defined a probability distribution over G

$$Q_{\overline{g}}(h) = \Pr_{\overline{\epsilon}}[g_1^{\epsilon_1} \cdots g_k^{\epsilon_k} = h]$$

where $\overline{\epsilon} = (\epsilon_1, \ldots, \epsilon_k)$ is picked randomly, uniformly from $\{0, 1\}^k$. Now fix group elements x_1, \ldots, x_l and integers $\gamma_1, \ldots, \gamma_l$. We insert the x_i at intervals γ_i : Let

$$R_{\overline{g}}(h) = \Pr_{\overline{\epsilon}} \left[g_1^{\epsilon_1} \cdots g_{\gamma_1}^{\epsilon_{\gamma_1}} x_1 g_{\gamma_1+1}^{\epsilon_{\gamma_1+1}} \cdots g_{\gamma_1+\gamma_2}^{\epsilon_{\gamma_1+\gamma_2}} x_2 \cdots x_l \cdots g_k^{\epsilon_k} = h \right]$$

Let's look at this in the case where l = 1. In this case, we are considering products of the form

$$g_1^{\epsilon_1} \cdots g_i^{\epsilon_i} x g_{i+1}^{\epsilon_{i+1}} \cdots g_k^{\epsilon_k} = g_1^{\epsilon_1} \cdots g_i^{\epsilon_i} (g_{i+1}^x)^{\epsilon_{i+1}} \cdots (g_k^x)^{\epsilon_k} x$$

where $i = \gamma_1$, $x = x_1$, and g^x denotes xgx^{-1} . Declare $\overline{z}(x, \gamma) = (1, \ldots, 1, x, \ldots, x)$, where 1's appear in the first *i* positions, and write

$$(g_1,\ldots,g_k)^{(z_1,\ldots,z_k)} = (g_1^{z_1},\ldots,g_k^{z_k})$$

Evidently,

$$R_{\overline{g}}(h) = Q_{\overline{g}^{\overline{z}(x,\gamma)}}(hx^{-1})$$

If l > 1, we just have to repeat these maneuvers to define a string $\overline{z}(\overline{x}, \overline{\gamma})$ and a function $f(\overline{x})$ so that

$$g_1^{\epsilon_1} \cdots g_{\gamma_1}^{\epsilon_{\gamma_1}} x_1 g_{\gamma_1+1}^{\epsilon_{\gamma_1+1}} \cdots g_{\gamma_1+\gamma_2}^{\epsilon_{\gamma_1+\gamma_2}} x_2 \cdots x_l \cdots g_k^{\epsilon_k} = \left(\overline{g}^{\overline{z}(\overline{x},\overline{\gamma})}\right)^{\overline{\epsilon}} \cdot \left(f(\overline{x})\right)^{-1}$$

Then we have

$$R_{\overline{g}}(h) = Q_{\overline{g}^{\overline{z}(\overline{x},\overline{\gamma})}}(h \cdot f(\overline{x})) \tag{1}$$

We want to show $R_{\overline{g}}$ is usually close to uniform.

Definition 1 A probability distribution Q on a finite group G is ϵ -uniform if

$$Q(h) > \frac{1-\epsilon}{|G|}$$

for all $h \in G$.

Two lectures ago, we proved:

Theorem 2 (Erdős–Rényi) For all $\epsilon, \delta > 0$, $Q_{\overline{g}}$ is ϵ -uniform for more than $1 - \delta$ proportion of $\overline{g} \in G^k$, given $k > 2\log_2 |G| + 2\log_2 \frac{1}{\epsilon} + \log_2 \frac{1}{\delta}$.

Multiplication by $f(\overline{x})$ is a bijection on the elements of G, so ϵ -uniformity of $Q_{\overline{g}}(h)$ over h implies ϵ uniformity of $Q_{\overline{g}}(h \cdot f(\overline{x}))$ over h. Because conjugation by $\overline{z}(\overline{x},\overline{\gamma})$ is a bijection on G^k , the $R_{\overline{g}}$ will be ϵ -uniform for the same proportion of \overline{g} as $Q_{\overline{g}}$, applying equation (1). Thus, we have Erdős-Rényi for $R_{\overline{g}}$:

Theorem 3 For all $\epsilon, \delta > 0$, $R_{\overline{g}}$ is ϵ -uniform for more than $1 - \delta$ proportion of $\overline{g} \in G^k$, given $k > 2 \log_2 |G| + 2 \log_2 \frac{1}{\epsilon} + \log_2 \frac{1}{\delta}$.

Now, we look at a probability distribution of group elements over a larger sample space, describing what happens when the x_i may or may not be inserted. Define

$$Q_{\overline{g},\overline{x}}(h) = \Pr_{\overline{\epsilon},\overline{\alpha}} \left[g_1^{\epsilon_1} \cdots g_{\gamma_1}^{\epsilon_{\gamma_1}} x_1^{\alpha_1} g_{\gamma_1+1}^{\epsilon_{\gamma_1+1}} \cdots g_{\gamma_1+\gamma_2}^{\epsilon_{\gamma_1+\gamma_2}} x_2^{\alpha_2} \cdots x_l^{\alpha_l} \cdots g_k^{\epsilon_k} = h \right]$$

where $\overline{\alpha}$ is picked uniformly from $\{0,1\}^l$. For fixed $\overline{\alpha}$, let

$$R_{\overline{g},\overline{x},\overline{\alpha}}(h) = \Pr_{\overline{\epsilon}} \left[g_1^{\epsilon_1} \cdots g_{\gamma_1}^{\epsilon_{\gamma_1}} x_1^{\alpha_1} g_{\gamma_1+1}^{\epsilon_{\gamma_1+1}} \cdots g_{\gamma_1+\gamma_2}^{\epsilon_{\gamma_1+\gamma_2}} x_2^{\alpha_2} \cdots x_l^{\alpha_l} \cdots g_k^{\epsilon_k} = h \right]$$

Then we have

$$Q_{\overline{g},\overline{x}} = \frac{1}{2^l} \sum_{\overline{\alpha}} R_{\overline{g},\overline{x},\overline{\alpha}} \tag{2}$$

Suppose $k > 2\log_2 |G| + 2\log_2 \frac{1}{\epsilon} + \log_2 \frac{1}{\delta}$ is fixed. Draw a grid whose rows represent the choices of \overline{g} from G^k , and whose columns represent the choices of $\overline{\alpha}$. Keep $l, \overline{\gamma}$, and \overline{x} fixed. Mark the $(\overline{g}, \overline{\alpha})$ position in this grid if $R_{\overline{g},\overline{x},\overline{\alpha}}$ is ϵ -uniform. Theorem 3 applies to $R_{\overline{g},\overline{x},\overline{\alpha}}$, saying that in every column (*i.e.* for any fixed $\overline{\alpha}$), the proportion of unmarked squares is less than δ . Consequently, less than $\sqrt{\delta}$ of the rows have more than $\sqrt{\delta}$ of their positions unmarked. By equation (2), for more than $1 - \sqrt{\delta}$ of the \overline{g} ,

$$Q_{\overline{g},\overline{x}}(h) > \frac{1-\sqrt{\delta}}{|G|}(1-\epsilon)$$

This proves:

Theorem 4 For every $\epsilon, \delta > 0$, $Q_{\overline{g},\overline{x}}$ is $(\epsilon + \delta)$ -uniform for more than $1 - \sqrt{\delta}$ proportion of \overline{g} , given $k > 2 \log_2 |G| + 2 \log_2 \frac{1}{\epsilon} + \log_2 \frac{1}{\delta}$.

Lazy Random Walks

Now we return to our question about mixing time.

Definition 5 Fix $\overline{g} = (g_1, \ldots, g_k)$, not necessarily generating G. A lazy random walk through \overline{g} is a sequence of group elements X_t such that $X_0 = 1$ and $X_{t+1} = X_t \cdot g_{i_{t+1}}^{\epsilon_{t+1}}$, where each i_{t+1} is picked randomly, uniformly from $\{1, \ldots, k\}$, and ϵ_{t+1} is picked randomly, uniformly from $\{0, 1\}$. Thus

$$X_t = g_{i_1}^{\epsilon_1} \cdots g_{i_t}^{\epsilon_t}$$

Let $P_{\overline{g}}^t$ be the probability distribution of the lazy random walk through \overline{g} after t steps. Today's work has shown us: If, after t steps, we have selected k' distinct i's (where k' is at least as big as in theorem 4), then $P_{\overline{g}}^t$ will be close to uniform for most \overline{g} ; the redundant generators chosen in the lazy random walk will take the place of \overline{x} .

From the Coupon Collector's Problem, we can compute how big t must be in order to provide enough generators. If we need to collect all the g_i and $\overline{g} = (g_1, \ldots, g_k)$, the expected waiting time is

$$1 + \frac{k}{k-1} + \frac{k}{k-2} + \ldots + k = k \log k + O(k)$$

We'll fill in more details in the next lecture.