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Lecture 8
Lecturer: Igor Pak Scribe: Bo-Yin Yang

The Plot

Our general plan for these few lectures is to prove the following will “usually” (with probability arbitrarily
close to 1) happen:

1. Random O(log |G|) group elements will generate the group G.

2. Random O(log |G|) group elements will generate the group G with diameter O(log |G|), and will do so
even with random products only. (Note: This is essentially what the Erdős–Rényi Theorem says.)

3. Random walks (more strongly, “lazy” random walks) on G with O(log |G|) random elements as gener-
ators mixes in O(log |G|) time.

4. Cayley graph of G with O(log |G|) random generators is an expander (we will get to this later).

At this point the Erdős–Rényi Theorem is not yet very useful since it is not that easy to obtain a random
sample of elements in the first place. We aim to ameliorate this in the next two lectures.

Extending Erdős–Rényi to Words

Assume that w = w1w2 · · ·wm is a “word” made up of “letters” wj , each of which belongs to the “alphabet”
{g1, g2, . . . , gk}. Further assume that each of g1, g2, . . . , gk appears at least once within the word.

Let Qwḡ (h) ≡ Prε(wε11 wε22 · · ·wεmm = h). We aim to show that this Q has the same nice properties as P .

Proposition 1

Prḡ

(
max
h∈G

∣∣∣∣Qwḡ (h)− 1
|G|

∣∣∣∣ < ε

|G|

)
> 1− δ,

where k > 2 log2 |G|+ 2 log2

1
ε

+ log
1
δ

(as previously in Erdős–Rényi).

Proof: We first define the notation of “conjugation” for a, x ∈ G (Igor: “Sorry for the slightly confusing
notation, but this is how algebraists actually write it.”):

ax ≡ x ax−1.

Claim 2 (“obvious”)

1. (ax)y = ayx
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2. (ax)ε = (aε)x for ε = 0, or 1.

3. if a is uniformly random in G, then so is ax for any fixed x ∈ G.

Now we look at the word w and “restructure” by look at repetitive reappearances of any gi. For example if

w = g1 g2 g3 g4 g1 g5 g3 g7 · · ·

then we proceed as follows:

w =
first︷ ︸︸ ︷

g1 g2 g3 g4 g1 g5 g3 g7 · · ·
= g1g2 g3g4(g5)g1(g3)g1︸ ︷︷ ︸

second

(g7)g1 · · · g1

= g1g2g3g4(g5)g1(g7)(g3g1) · · · g3g1
= · · ·

We will proceed the same way with or without the εi powers. What will we end up with? Let h1, h2, . . . , hk
be the gj permuted to the order of appearance in w. Then we will eventually end with

w =
(
h1 (h2)φ2(h1) (h3)φ3(h1,h2) · · · (hk)φk(h1,...,hk−1)

)
·
(
(`1)ψ1(h1,...,hk) (`2)ψ2(h1,...,hk) (`m−k)ψm−k(h1,...,hk)

)
,

where `1, . . . , `m−k are “leftovers”, gi’s in a permutation with repetition, and the φi’s and ψi’s are fixed
products of the letters hj .

Let εj be the corresponding εi power of hj at each initial appearance. It is then straightforward to verify
that

wε̄ =
(
hε11

(
(h2)φ

′
2

)ε2 (
(h3)φ

′
3

)ε3
· · ·
(
(hk)φ

′
k

)εk
)
·

(
m−k∏
i=1

(
(`i)ψ

′
i

)ε′i)

True, now the φi’s not only depend on hj for each j < i, but may also depend on the random powers
ε′i ∈ {0, 1} for every i; and each ψ′i not only does depend on all the hj but it also may depend on ε′j for each
j > i. However, we can verify that that

• for each given ε′1, ε
′
2, . . . , ε

′
m−k, the “junk tail” J ≡

(∏m−k
i=1

(
(`i)ψ

′
i

)ε′i)
is fixed in G.

• for each given ε′1, ε
′
2, . . . , ε

′
m−k and given h1, h2, hi−1, the function φ′i is fixed in G; hence

(
(hi)φ

′
i

)
is

uniformly random in G if hi itself is. I.e. Probability in terms of
(
(hi)φ

′
i

)
is just like probability in

terms of hi themselves.

• We see from the above that Qwḡ (h) is some kind of average over Qh̄(d) for all d ∈ G, hence

max
h∈G

∣∣∣∣Qwḡ (h)− 1
|G|

∣∣∣∣ < max
h∈G

∣∣∣∣Qḡ(h)− 1
|G|

∣∣∣∣ ,
and the proposition is proved.
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Not Quite Uniform Distributions

Now we turn our attention to the situation where we have a way of sampling from a group that is not
uniformly random. We can measure how “non-uniform” the sampling is in a few different ways. Assume
that P is a probability distribution on G and U is the uniform distribution, then we could use the “total
variation”

‖P − U‖ ≡ max
B⊂G

∣∣∣∣P (B)− |B|
|G|

∣∣∣∣ = 1
2

∑
g∈G

(
P ({g})− 1

|G|

)
;

we could also use the “separation”, defined as (note! no absolute value):

sep(P ) ≡ |G| max
g∈G

(
1
|G|

− P ({g})
)
.

The two distances satisfy 0 ≤ ‖P −U‖ ≤ sep(P ) ≤ 1. Note also that sep(P ) is essentially an `∞ norm, since

Prḡ

(
max
h∈G

∣∣∣∣Qwḡ (h)− 1
|G|

∣∣∣∣ > ε

|G|

)
< δ ⇔ Pr (sep(Qg) > ε) < δ.

The separation is useful because when sep(P ) < ε, we can find a distribution N where

P = (1− ε)U + εN.

Figuratively, to sample from P , we first pick a random variable in [0; 1], if it is less than ε we then sample
from the “noise” distribution N , otherwise we sample from the uniform distribution U .

In other words, if sep(P ) = s, then we can let k̃ = k/(1 − s), where k is the requisite number from Erdős–
Rényi. If we take more than k̃ samples from P , enough of these samples – “usually” at least k – will be
sampled from the “uniform” part U , hence the “lazy random walk will again be probabilistically almost
uniform. We will make that more rigorous by repeating the trick used today in the next lecture to show
that we will be able to approximate a uniform sampling of the group from nonrandomly generated random
products.


