18.317 Combinatorics, Probability, and Computations on Groups 19 September 2001

Lecture 5
Lecturer: Igor Pak Scribe: Dennis Clark

Proof of a Lemma

Our plan here is to prove the following lemma, needed in the fixed proof of Erd6s-Turan’s theorem:

Lemma 1 Suppose A={1<a; <as <---<a, <n}. Then:

1
Pr(o € S,has no cycles in A) < —=—— (1)
D1 @
But we’ll need a few sublemmas first.
Sublemma 2 )
E(# of l-cycles in o € S;,) = 7 (2)
Proof: (1)) " )
n —D!(n =0
E = _—_— = =
<l> n! l 3)
||
Sublemma 3 Assume | #m, and I +m < n. Then:
1
E(# of l-cycles - # of m-cycles in o € Sy,) = T (4)

Proof: First, we take the sum in the first equation over the number of ways to split n into an [-subset, and
m-subset, and an n — m — [ subset.

E= Z Pr(cycle at l-subset and cycle at m-subset) (5)

Then, recognize that all of the probabilities will be symmetric, so we can just multiply appropriately:

n (I—=D'm—-Dln—m—1)!
E = (l,m,n—l—m>' n! ©)
n!(l — Dl(m — 1)l(n —m —1)!
- = l!gﬂ((nn}b(l)!n! ) (7)
1
= -~ (8)
|

As a corollary, we get:
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Corollary 4

1 1 1
E(# ofcyclesina):1+§+~-~+£mlogn+7+0(g) (9)
where 7y is a constant.
Proof: ]
E= E f l-cycles) = - 10
zl: (# of l-cycles) Zl (10)
|
Another sublemma, here departing from Erdos-Turan:
Sublemma 5 ) ’
2\ T if 2l >n
E((# of l-cycles) ){ %—i_l% 2 <n (11)
Proof:
To start, observe that
1 — _ 1
E(# of l-cycles) = 7 ; Pr(i € l-cycle) = 7 (12)

from the proof of Sublemma 2. This gives:
Corollary 6 Pr(i € l-cycle) = 1.
Therefore the total number of cycles is approimately logn. Similarly, Erd6s-Turan obtain

1
log(H cycle length) = 3 log? n (13)

So then we can observe that the square of the number of [-cycles is precisely the number of ordered pairs of
elements belonging to [-cycles divided by 12, which yields:

1 n n
E = 2 Z Z Pr(i € l-cycle andj € l-cycle) (14)
i=1 ij1
1 n n
= l—z(z Pr(i € l-cycle) + Z Pr(i € l-cycle) Pr(j € l-cycle|i € l-cycle)) (15)
i=1 i#j

We consider the sums one at a time. First, the first sum is equal to:

1 1 1
2L E (16)

from Corollary 6.

Let us consider now the second sum, which is equal to

12~n~i-(n—1)(l_1—|—n_l ! ) (17)

n—1"n—-1 n—1

o~
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The justification for the fractions inside the parentheses is as follows: consider that the element ¢ is already

in an [-cycle. We want the probability that j is in an Il-cycle. First, the probability that j is in the same
l-cycle as i is simply %, since j can be in any of n — 1 places, | — 1 of which are what we’re looking for.

The second summand is the probability that j is among the remaining points but is in an [-cycle anyway,
which can only happen if [ +1 < n. So we get the following:

1 1 .
E((# of l-cycles)”) { SRR 20 <n (18)
Which then gives us:
1 if 20 >n
E‘{%; it 20 <n (19)
as needed. [ |

Then, we return at last to the proof of Lemma 1:
Proof:

We first estimate the expected value of the number of A-cycles:

T I 1
E f A-cycles) = E f a;-cycles) = — 2
(# of A-cycles) Z:ZI (# of a;-cycles) Zzzl o (20)
This gives:
E((# of A-cycles)?) = Z E(#a;-cycles - #ajcycles) + Z E((#aj-cycles)?) (21)
i#j i=1

Applying the two main sublemmas to the two sums yields:

2
2 3 Lay(Eed)-nls (sl &

1<i<j<r

Now, let X be a random variable describing the number of A-cycles. We have
Var(# of A-cycles) = Var(X) = E(X?) — (E(X))? (23)

[Ealz)) )

i

From here and Chebyshev inequality we get the following:

Pr(X=0) = Pr(X+E(X)<EX)) (25)
Var(X)
S EXR) (26)
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which proves the lemma.



