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Proof of a Lemma

Our plan here is to prove the following lemma, needed in the fixed proof of Erdős-Turan’s theorem:

Lemma 1 Suppose A = {1 ≤ a1 < a2 < · · · < ar ≤ n}. Then:

Pr(σ ∈ Snhas no cycles in A) <
1∑r

i=1 ai
(1)

But we’ll need a few sublemmas first.

Sublemma 2
E(# of l-cycles in σ ∈ Sn) =

1
l

(2)

Proof:

E =
(

n

l

)
(l − 1)!(n− l)!

n!
=

1
l

(3)

Sublemma 3 Assume l 6= m, and l + m ≤ n. Then:

E(# of l-cycles · # of m-cycles in σ ∈ Sn) =
1

l m
(4)

Proof: First, we take the sum in the first equation over the number of ways to split n into an l-subset, and
m-subset, and an n−m− l subset.

E =
∑

Pr(cycle at l-subset and cycle at m-subset) (5)

Then, recognize that all of the probabilities will be symmetric, so we can just multiply appropriately:

E =
(

n

l, m, n− l −m

)
· (l − 1)!(m− 1)!(n−m− l)!

n!
(6)

=
n!(l − 1)!(m− 1)!(n−m− l)!

l!m!(n−m− l)!n!
(7)

=
1

lm
(8)

As a corollary, we get:

1
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Corollary 4

E(# of cycles in σ) = 1 +
1
2

+ · · ·+ 1
n
≈ log n + γ + O(

1
n

) (9)

where γ is a constant.

Proof:
E =

∑
l

E(# of l-cycles) =
∑ 1

l
(10)

Another sublemma, here departing from Erdős-Turan:

Sublemma 5

E
(
(# of l-cycles)2

)
=
{

1
l if 2l > n
1
l + 1

l2 if 2l ≤ n
(11)

Proof:

To start, observe that

E(# of l-cycles) =
1
l

n∑
i=1

Pr(i ∈ l-cycle) =
1
l

(12)

from the proof of Sublemma 2. This gives:

Corollary 6 Pr(i ∈ l-cycle) = 1
n .

Therefore the total number of cycles is approimately log n. Similarly, Erdős-Turan obtain

log(
∏

cycle length) ≈ 1
2

log2 n (13)

So then we can observe that the square of the number of l-cycles is precisely the number of ordered pairs of
elements belonging to l-cycles divided by l2, which yields:

E =
1
l2

n∑
i=1

n∑
ij1

Pr(i ∈ l-cycle andj ∈ l-cycle) (14)

=
1
l2

(
n∑

i=1

Pr(i ∈ l-cycle) +
n∑

i 6=j

Pr(i ∈ l-cycle)Pr(j ∈ l-cycle|i ∈ l-cycle)) (15)

We consider the sums one at a time. First, the first sum is equal to:

1
l2
· n · 1

n
=

1
l2

(16)

from Corollary 6.

Let us consider now the second sum, which is equal to

1
l2
· n · 1

n
· (n− 1)

(
l − 1
n− 1

+
n− l

n− 1
· 1
n− l

)
(17)
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The justification for the fractions inside the parentheses is as follows: consider that the element i is already
in an l-cycle. We want the probability that j is in an l-cycle. First, the probability that j is in the same
l-cycle as i is simply l−1

n−1 , since j can be in any of n − 1 places, l − 1 of which are what we’re looking for.
The second summand is the probability that j is among the remaining points but is in an l-cycle anyway,
which can only happen if l + l ≤ n. So we get the following:

E((# of l-cycles)2) =
{

1
l2 + 1

l2 · (l − 1) if 2l > n
1
l2 + 1

l2 · l if 2l ≤ n
(18)

Which then gives us:

E =
{

1
l if 2l > n
1
l + 1

l2 if 2l ≤ n
(19)

as needed.

Then, we return at last to the proof of Lemma 1:

Proof:

We first estimate the expected value of the number of A-cycles:

E(# of A-cycles) =
r∑

i=1

E(# of ai-cycles) =
r∑

i=1

1
ai

(20)

This gives:

E((# of A-cycles)2) =
r∑

i 6=j

E(#ai-cycles ·#ajcycles) +
r∑

i=1

E((#ai-cycles)2) (21)

Applying the two main sublemmas to the two sums yields:

≤ 2
∑

1≤i<j≤r

1
aiaj

+
∑

i

(
1
a2

i

+
1
ai

)
=
∑

i

1
ai

+

(∑
i

1
ai

)2

(22)

Now, let X be a random variable describing the number of A-cycles. We have

V ar(# of A-cycles) = V ar(X) = E(X2)− (E(X))2 (23)

=

∑
i

1
ai

+

(∑
i

1
ai

)2
−

(∑
i

1
ai

)2

=
∑

i

1
ai

(24)

From here and Chebyshev inequality we get the following:

Pr(X = 0) = Pr(X + E(X) ≤ E(X)) (25)

≤ V ar(X)
(E(X)2)

(26)

≤
∑

1
ai

(
∑

1
ai

)2
(27)

≤

(∑
i

1
ai

)−1

(28)
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which proves the lemma.


