18.317 Combinatorics, Probability, and Computations on Groups 14 September 2001

Lecture 4

Scribe: Ben Recht

Even if a paper is famous and written by very famous individuals, that does not necessarily mean that it is correct. In this lecture, we will look at a proof of the probabilistic generation of S_n by Dixon, based on results of Erdős and Turan. Then we discuss the lemmas which they proved incorrectly in their paper.

Our goal will be to prove

Lecturer: Igor Pak

Theorem 1

$$Pr(\langle \sigma_1, \sigma_2 \rangle = A_n \text{ or } S_n) \to 1 \text{ as } n \to \infty$$

The idea of the proof is a follows. First we will prove that the probability that $\langle \sigma_1, \sigma_2 \rangle$ is primitive goes to 1 as n goes to infinity. Next, we can show that the probability that $\langle \sigma_1, \sigma_2 \rangle$ contains a cycle of length p, where p is a prime less than n-3 also goes to 1 as n goes to infinity. Then the theorem follows immediately by the following result of Jordan

Theorem 2 (Jordan 1873) If $G \leq S_n$ is primitive and contains a cycle of length p where p is a prime less than n-3 the G is equal to A_n or S_n .

The proof of Jordan's theorem can be found in many classic texts on group theory.

We'll proceed with the following

Lemma 3 $Pr(\langle \sigma_1, \sigma_2 \rangle \text{ is transitive}) = 1 - \frac{1}{n} + O(\frac{1}{n^2})$

Proof: Let $p = Pr(\langle \sigma_1, \sigma_2 \rangle$ is transitive). Then

$$1 - p < \sum_{k=1}^{n/2} {n \choose k} Pr(\sigma_1 \text{ and } \sigma_2 \text{ fix blocks of size } k \text{ and } n - k)$$

$$= \sum_{k=1}^{n/2} {n \choose k} \frac{1}{\binom{n}{k}^2}$$

$$= \sum_{k=1}^{n/2} \frac{1}{\binom{n}{k}}$$

$$= \frac{1}{n} + O(\frac{1}{n^2})$$

We'll now prove a result about when $\langle \sigma_1, \sigma_2 \rangle$ is primitive.

Theorem 4 $Pr(\langle \sigma_1, \sigma_2 \rangle \text{ is imprimitive}) = O(\frac{n}{2^{n/4}})$

Proof: The probability that σ has a fixed block structure with block size d (md = n) is equal to $\frac{d!^m m!}{n!}$ as we can permute the blocks and the elements within the blocks. The number of block structures with block size d is equal to

$$\frac{\binom{n}{d\dots d}}{m!} = \frac{n!}{d!^m m!}$$

Here is is clear that the multinomial coefficient is over m d's.

Now

$$Pr(\langle \sigma_1, \sigma_2 \rangle \text{ is imprimitive}) < \sum_{d|n} \frac{n!}{d!^m m!} \left(\frac{d!^m m!}{n!}\right)^2$$
$$< \sum_{m=2}^{n/2} \frac{(\frac{n}{m})!^m m!}{n!}$$
$$= \frac{(n/2)!2^n}{n!} + \dots + \frac{2!(n/2)!^2}{n!}$$

The last term in this sum is a dominating term, there are n/2 such terms and $\binom{n}{n/2} > 2^{n/2}$, thus completing the proof.

Corollary 5 $Pr(\langle \sigma_1, \sigma_2 \rangle \text{ is primitive }) = 1 - \frac{1}{n} + O(\frac{1}{n^2})$

We now will attempt to prove

Theorem 6 Let $\sigma \in S_n$ and p be a prime less than n-2. Then $Pr(\sigma = \sigma_p \prod_i \gamma_i)$, where σ_p is a p-cycle and γ_i are c_i -cycles with $p \nmid c_i$, goes to 1 as n goes to infinity.

This result will imply Dixon's theorem. To prove this result, we will prove the following two lemmas next time.

Lemma 7 (Erdős -Turan) Let $1 \le a_1 \le a_2 \le a_r \le n$. Then

$$Pr(\sigma \in S_n \text{ does not contain any cycles of length } a_i) \leq \sum_{i=1}^r \frac{1}{a_i}$$

Lemma 8 Let $\sigma \in S_n$ and p < n be a prime. Then $Pr(p \nmid order(\sigma)) = \prod_{k=1}^{n/p} (1 - \frac{1}{pk})$.

Erdős and Turan published a famous proof of these lemmas. We will construct correct proofs in the next lecture.