
18.317 Combinatorics, Probability, and Computations on Groups 5 December 2001

Lecture 33
Lecturer: Igor Pak Scribe: Christopher Malon

Blind Algorithms and Product Replacement

Recall the Product Replacement Algorithm:

• Start at a generating k-tuple 〈g1, . . . , gk〉 = G.

• Run a random walk on Γk(G) for T steps.

• Output a random component gi of the vertex you arrive at.

So that we know how long to take the random walk in this algorithm, it would be helpful to know whether
the mixing time of Γk(G) is polynomial in log |G|.

We can make some trivial observations in response to this question:

• Γk(G) need not even be connected, so the mixing time could be infinite.

• If k > d(G) + m(G), then Γk(G) is connected, and its mixing time is finite.

• The diameter of Γk(G) is O(log2|G|) for k = 2 log |G|. The mixing time must be at least as big as the
diameter, but we don’t know how much bigger.

We will prove:

Theorem 1 Given c, c′ > 0, there is a constant c′′ > 0 so that if c log |G| log log |G| ≤ k ≤ c′ log |G| log log |G|,
then the mixing time τ4 ≤ c′′log14|G|log log5|G|).

Blind Algorithms

Suppose R1, . . . , Rk are reversible Markov chains on {1, . . . , n}, and let π be a stationary distribution, i.e.,
Riπ = π for all i. (If π is a uniform distribution, then reversibility means that the Ri are symmetric
matrices.) Define M = 1

k (R1 + . . . + Rk), which is again a Markov chain satisfying Mπ = π.

Let a = (a1, . . .) be a finite sequence with each ai ∈ {1, . . . , k}. Let l(a) denote the length of the sequence
a. Let A be the set of all such sequences a, and A be a probability distribution on A. Let T = EA(l(a)) be
the expectation value of the length. For each a, define Ra = Ra1 · · ·Ral(a) .

Definition 2 A defines a blind algorithm if, for all i ∈ {1, . . . , n}, we have ‖EA(Ra(i))− π‖ < 1
4 .

1

Lecture 33: 5 December 2001 2

A special case of a blind algorithm arises when we have a labeled graph on n vertices, the transition
probabilities in each Ri are positive only between vertices that are joined by an edge, and the Ri are
symmetric (so that the uniform distribution is stationary with respect to all Ri). If we fix a starting vertex
i, each sequence a defines a probability distribution on the vertices of the graph, namely, the probability
distribution over the endpoints of paths of length l(a) from i, in which we use Raj

to decide where to go
on the jth step. If we, furthermore, impose a probability distribution A on the sequences a, then we get a
probability distribution Qi on all the vertices of the graph. To say that A defines a “blind” algorithm means
that for all i, the separation distance ‖Qi − U‖ < 1

4 .

Recall the fourth definition of mixing time for a random walk whose probability distribution is Qt at the tth
step (Lecture 12, October 5):

τ4 = min{t : ‖Qt − U‖ <
1
4
}

Note that neither A nor a defines a random walk in the usual sense, because the transition probabilities
at each step depend on more than our location in the graph. However, M = 1

k (R1 + . . . Rk) does define a
random walk, and we have the following theorem.

Theorem 3 Let M = 1
k (R1 + . . . + Rk). If A defines a blind algorithm and T is the expected length of a

path chosen from A via A, then the mixing time τ4(M) = O(T 2k log 1
π0

), where π0 is the minimum of the
entries appearing in the stationary distribution π.

We won’t prove this theorem, but we’ll apply it in a special case.

Suppose G is a finite group, S = S−1 = {s1, . . . , sk} is a symmetric generating set, and Γ = Γ(G, S) is the
corresponding Cayley graph. Take the Ri to be the permutation matrix given by right multiplication g → gsi

(a deterministic Markov chain). Given any sequence a = (a1, . . . , al), Ra sends g → gsa1 · · · sal
. For every

element g ∈ G, fix a path from the identity e to g of minimal length. Define a probability distribution A on
A to be 1

|G| at a if sa1 , sa1sa2 , . . . , sa1sa2 · · · sal
is the selected path from e to the group element sa1 · · · sal

,
and zero otherwise.

In G = Zn with S = {±1}, there are only one or two ways to fix these paths (the shortest decomposition of
each element, except possibly n

2 , is unique). The matrix R1 corresponds to moving left through the cycle, and
R2 to moving right. The expected length T of a path is O(n), and π0 = 1

n because the uniform distribution
is stationary under R1 and R2. By Theorem 3, the mixing time for this Cayley graph is O(n2 log n). This
result is close to what we know (O(n2)).

For any finite group G with A defined as above, we have T = EA(l(a)) ≤ d where d = diam(Γ(G, S)).
Thus, the mixing time for a random walk on Γ where we apply generators s ∈ S uniformly at random is
O(d2 log |G|).

A Blind Algorithm on the Product Replacement Graph

Finally, we sketch the proof of Theorem 1. Recall that the edges in the graph Γk(G) are given by

R±
ij : (g1, . . . , gk) → (g1, . . . , gig

±
j , . . . , gk)

where gig
±
j appears in the ith position. There are O(|G|k) vertices in the graph, and O(k2) edges emanate

from every vertex. Theorem 3 will give us a bound on the mixing time of Γk(G) if we construct a blind
algorithm A with respect to the R±

ij .

Let (g1, . . . , gr) be a generating r–tuple for G, where r = O(log |G|), and consider (g1, . . . , gr, 1, . . . , 1) ∈
Γk(G). Instead of following a random walk on the product replacement graph Γk(G), we’re going to embed

Lecture 33: 5 December 2001 3

Babai’s algorithm for generating uniform random group elements into an algorithm on Γk(G). Start by
setting s = r. We will define the probability distribution A on A as follows. For each of the first L steps,
choose i ∈ {1, . . . , s} and ± uniformly at random, and apply R±

s+1,i. After these L steps, increment s and
repeat. Analysis of the Babai algorithm (November 14) shows that if we take L = O(log3|G|) and do this
l = O(log |G|) times, we should have gr+l close to uniform in G.

By multiplying every position by a nearly uniform group element in this manner, we can obtain a nearly
uniform element of Γk(G) in T = O(k · log4|G|) steps. There are a lot of technical details to work through
here, and they weren’t covered in class.

As k ≤ c′ log |G| log log |G|, Theorem 3 yields

τ4 = O(T 2k2 log
1
1

|G|k
)

= O(k5(log |G|)9)
= O(log14|G|log log5|G|)

as desired.

