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Bias (continued)

Theorem 1 (P. Hall). For a simple group H and G = Hm, it follows that 〈g1, . . . , gk〉 = G if and only if
〈h(1)

j , h
(2)
j , . . . , h

(k)
j 〉 = H for all j from 1 to m.

We shall henceforth work with H = An, m = n!
8 , κ = o(n), G = Hm, and Q = Qk, which to refresh our

memory, is simply the probability distribution of g1 in ḡ = (g1, g2, . . . , gk) ∈ Γk(G).

Theorem 2. There is a subset B of G such that, as n →∞, |B|
|G| → 1 but Q(B) → 0.

That is to say that there is a huge subset (approaching the full set) of G which is hardly ever generated by
a k-tuple of generators.

We claim that, roughly, if k ≥ k, then the values of hj = (h(1)
j , h

(2)
j , . . . , h

(k)
j ) are independent.

Then we have the lemma:

Lemma 3. |Γk(o)| = |Γk(H)|m|(1−O( 1
n! )).

Proof: The number of automorphisms of Γk(H) is, as we discussed earlier, αk(G), which must exceed
Hk

2|Aut(H)| = 1
2

( n
2 )k

n! = N . Now, |Γk(G)| is equal to the product of |Γk(H)|m and the probability that each
generated k-tuple is in a distinct orbit. This we can easily calculate to be (1− 1

N )(1− 2
N ) · · · (1− m

N ), which

exceeds (1 − m
N )m and thus (1 − m2

N ). Using the equation m = n!
8 and N ≥ (n!)3

32 , the above factor can be
easily shown to exceed 1− 1

2n!

Let An be generated by (h1
1, h

2
1, . . . , h

k
1). We know that with probability ≈ 1

n (specifically, 1
n ±

1
n3 ), h1

1 moves
the first element. What would the specific probability tell us about g1?

We start by looking at φk(An), which would be 1 minus the probability of “bad events”. What sort of “bad
events” might we have in mind? They can be characterized by h1, . . . , hk ∈ M for some maximal subgroup
M of H. There are really only 3 types of maximal subgroups in H: those with one fixed point, those with
a pair of elements forming an orbit, and those with two fixed points. The probability of generating any of
these is easily calculated:

φk(An) = 1− 1
nk

n− 1
n(n− 1)k

(
n

2

)
+

1
2(n(n− 1))k

(
n

2

)
= 1− 1

nk−1
+ O(

1
n2(k−1)

)

Let A be the event (h1, . . . , hk) ∈ Γk(H), and B be the event that h1 = 1. By the above, Pr(A) =
1− 1

nk−1
+ O( 1

n2(k−1) ) and Pr(B) = 1
n .

So what is Pr(B|A)? Well, it is equal to Pr(A|B)
Pr(A) Pr(B), and we may interpret Pr(A|B) as such; either

h2, . . . , hk fix the first element or they fix an element not equal to the first. Calculating the probabilities, it
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follows that
Pr(A|B) = 1− 2

nk−1
+ O(

1
n2(k−1)

)

and thus

Pr(B|A) =
1
n

(
1− 2

nk−1 + O( 1
n2(k−1) )

1− 1
nk−1 + O( 1

n2(k−1) )

)
=

1
n

(
1− 1

nk−1
+ O(

1
n2(k−1)

)
)

so P = 1
n −

1
nk + O( 1

n2k−1 ).

So, if we were to plot the number of generating sets giving us h1(1) = 1 for g uniform and g1 ∈ Γk(G), we
wil have peaks at 1

n and 1
n −

1
nk respectively, and we may return to our original result by choosing B ⊂ G

such that {g = (h1, . . . , hm)} in which the number of generating sets in which hi(1) = 1 exceeds m( 1
n −

1
2n2 ).

Using the Chernoff bounds, we find that |B| ≈ |G|(1− 1
n! ) → 1, and that Qk(B) ≈ 1

n! → 0.


