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Bias in the Product Replacement Algorithm

Here is the algorithm:

The input to the algorithm is a k-tuple g = (g1, g2, . . . , gr, 1, . . . , 1), where the elements g1, . . . , gr generate
the group G.

We then run a random walk on Γk(G) starting at g for L steps, putting us at the point g′. We choose i
randomly from 1, . . . , k, and output the group element g′i.

This algorithm is supposed to generate random group elements.

Here are some questions which can be asked about this algorithm:

Q1: Is Γk(G) connected?

Q2: How do we choose the values for k and L?

Q3: Is there bias in the output? (Are all group elements equally represented in generating k-tuples?)

In this lecture we will try to answer question 3.

Definition 1 Suppose G is a finite group, and k ≥ d(G). (Recall that d(G) is the minimum number of
generators necessary to generate G.)

Let Q be the probability distribution of the first component of (g1, . . . , gk), where (g1, . . . , gk) is selected
uniformly at random from among all k-tuples which generate G. So Q(a) is the probability that g1 = a.

Proposition 2 Let φk(G) be the probability that a random k-tuple (g1, . . . , gk) generates G.

If φk−1(G) ≥ 1/2, then sep(Q) ≤ 1/2.

Proof:

We need to show that for all a ∈ G, Prob(g1 = a) ≥ 1
2|G| , where (g1, . . . , gk) is a random generating k-

tuple. This probability is equal to the number of generating k-tuples of the form (a, g2, . . . , gk), divided by
the total number of generating k-tuples. The total number of generating k-tuples is at most |G|k. Since
φk−1(G) ≥ 1/2, the (k − 1)-tuple (g2, . . . , gk) generates G at least half the time. So (a, g2, . . . , gk) is a
generating k-tuple at least half the time, for any a. So there are at least |G|k−1

2 generating k-tuples which
have first element a. So the probability is at least 1

2|G| .

Question: Are there finite groups G with very small φk(G) for k ≥ d(G)?

The answer will turn out to be yes. Let Gn be the group (An)n!/8. Then d(Gn) = 2 for n large enough.
This fact follows from the following theorem.
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Theorem 3 (P. Hall, 1938)

Let H be a nonabelian simple group. Let αk(H) = max{m : d(Hm) = k}. Then αk(H) is the number of
Aut(H) orbits of action on Γk(H).

Let us see why this implies the earlier fact. We let H = An and let k = 2. For n > 6, it is a fact that
Aut(An) = Sn. (This is not true for n = 6, but this is not for normal people to understand why.) We will
assume that φ2(An) ≥ 1/2 (so two random elements of An generate An at least half the time). Thus there
are at least 1

2 (n!
2 )2 vertices in Γ2(An). Since Aut(An) = Sn, the size of an orbit is n!, so the number of orbits

is at least 1
2 (n!

2 )2 1
n! = n!

8 . So α2(An) ≥ n!
8 , so d((An)n!/8) = 2, which proves the fact from above.

We will now give a proof of Hall’s Theorem.

Proof:

Let G = Hm. Take 〈g1, . . . , gk〉 = G, and let gi = (h(i)
1 , h

(i)
2 , . . . , h

(i)
m ) ∈ G, where h

(i)
j ∈ H. Let us write

these elements in a k-by-m array as shown:

g1 = h
(1)
1 , h

(1)
2 , . . . , h

(1)
j , . . . , h

(1)
m

g2 = h
(2)
1 , h

(2)
2 , . . . , h

(2)
j , . . . , h

(2)
m

...

gk = h
(k)
1 , h

(k)
2 , . . . , h

(k)
j , . . . , h

(k)
m

Now look at the columns of this array. For all j, we must have 〈h(1)
j , h

(2)
j , . . . , h

(k)
j 〉 = H.

Claim 4 〈g1, . . . , gk〉 = G iff (h(1)
j , . . . , h

(k)
j ) are generating k-tuples in different Aut(H) orbits.

Proving this claim is enough to prove the theorem.

The “only if” direction is obvious; if two such k-tuples were in the same orbit, then it would be impossible
for (g1, . . . , gk) to generate all of Hm, since the two columns would always be bound by the isomorphism
between them.

For the “if” direction, assume the columns of the array are generating k-tuples which are in different orbits.
Let B = 〈g1, . . . , gk〉, and suppose B does not equal G. We will use an inductive argument. So assume that
for a k-by-(m − 1) array, if the columns are generating k-tuples in different orbits, then the rows generate
all of G. In our situation, this means that the projection of B onto the first m − 1 coordinates is onto.
(In other words, for any choice of the first m− 1 coordinates, there is an element of B which attains those
values, though we can’t say what its last coordinate will be.) Of course, there is nothing special about the
first m− 1 coordinates; this statement holds for any collection of m− 1 coordinates.

Now consider the subset C ⊂ B consisting of points whose first m − 1 coordinates are all equal to 1 (the
identity element). This is a normal subgroup of H, hence it is either H itself, or 1, since H is simple.
Suppose C = H. Then B would have to equal G, since we can find an element of B which sets the first m−1
coordinates to whatever we want, and then multiplying this by an appropriate member of C will yield any
element of G at all. So we must assume C = 1. Again, there is nothing special about the last coordinate.
So any element of B which has the value 1 for m− 1 of its coordinates must have value 1 in the remaining
coordinate as well.

Recall that we assumed H is nonabelian. Hence there are elements x and y with xyx−1y−1 6= 1. Since we can
set any m− 1 coordinates any way we like, it follows that (x, 1, . . . , 1, z) ∈ B, for some z. Similarly, we have
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(y, 1, . . . , 1, w, 1) ∈ B, for some w. Multiplying these gives (xy, 1, . . . , 1, w, z) ∈ B and (yx, 1, . . . , 1, w, z) ∈ B.
Dividing these last two gives (xyx−1y−1, 1, . . . , 1, 1) ∈ B. But this contradicts the result of the previous
paragraph.

This completes the proof of Hall’s Theorem.

Now back to the situation with An. As it turns out, for A5 we have α2(A5) = 19, which is greater than
5!
8 = 15, as we claimed that it should be for n large enough.

Claim 5 φk((An)n!/8) → 0 very rapidly as n →∞.

Proof:

Recall that
Prob(〈σ1, σ2, . . . , σk〉 6= An) >

1
nk

(This is true since each permutation will fix the point 1 with probability 1/n, hence with probability 1/nk

all k permutations will fix the point 1.) So

Prob
(
〈g1, . . . , gk〉 = (An)n!/8

)
≤

(
1− 1

nk

)n!/8

≤ e−n!/8nk

which is very small for n large.


