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Product Replacement Graphs

Definition 1 Let G be a finite group and let k ≥ d(G), where d(G) is the minimum number of gener-
ators of G. The product replacement graph Γk(G) is a graph on k-tuples (g1, g2, . . . gk) ∈ Gk satisfying
< g1, g2, . . . gk >= G. The edges of Γk(G) are

{g, R±
ij(g) },

{g, L±ij(g) },

where

R±
ij(g1, . . . gi, . . . gj , . . . gk) = (g1, . . . gig

±1
j , . . . gj , . . . gk)},

L±ij(g1, . . . gi, . . . gj , . . . gk) = (g1, . . . g
±1
j gi, . . . gj , . . . gk)}.

There are k(k− 1) choices for pairs (i, j), and two choices each for R or L and + or −. By allowing vertices
in Γk(G) to contain loops, this implies Γk(G) is a D− regular graph with D = 4k(k − 1).

Example. For G = Zm
p , d(G) = m, the vertices of Γm(Zm

p ) are matrices

A =


a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...
...

am1 am2 · · · amm


with det(A) 6= 0, aij ∈ Fp.

The operations R±
ij and L±ij correspond to left multiplication by

E± =


1 on the diagonal
±1 in entry ij
0 otherwise.

Note that since the group is abelian, the operations L and R are the same. So Γm(Zm
p ) is the Cayley graph

Γ(GL(m, p), {Eij(±1)}). Since E± has determinant ±1, Γm(Zm
p ) has p − 1 connected components, each

corresponding to different values for the determinant.

Conjecture 2 If k ≥ d(G) + 1, then Γk(G) is connected.
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The following weaker conjecture is also unknown.

Conjecture 3 If k ≥ 3, then Γk(Sn) is connected.

Lemma 4 (Higman) Let k = 2. Then the conjugacy class of [g1, g2] (< g1, g2 >= G) is invariant on
connected components of Γ2(G).

Proof: For (g1, g2) ∈ V (Γ2(G)), {L±(g1, g2), R±(g1, g2)} = {(g1g2, g2), (g1g
−1
2 , g2), (g2g1, g2), (g−1

2 g1, g2)}.

Then

[g1g2, g2] = g1g2g2g
−1
2 g−1

1 g−1
2 = [g1, g2],

[g2g1, g2] = g2g1g2g
−1
1 g−1

2 g−1
2 = g2[g1, g2]g−1

2 = [g1, g2]g
−1
2 ,

[g1g
−1
2 , g2] = g1g

−1
2 g2g2g

−1
1 g−1

2 = [g1, g2],

[g−1
2 g1, g2] = g−1

2 g1g2g
−1
1 g2g

−1
2 = g−1

2 [g1, g2]g2 = [g1, g2]g2 .

Example. Let G = An for n odd, k = 2 and consider a = (123 . . . n), b = (123 . . . p) with p 6 |n.

Then the commutators lie in different conjugacy classes, implying the number of connected components of
Γ2(An) →∞ as n →∞.

Theorem 5 Let m(G) denote the maximum size of a nonredundant generating set. For k ≥ d(G) + m(G),
Γk(G) is connected.

In order to prove the theorem, we first define graph Γ̃k(G) as the graph Γk(G) with additional edges defined
by the operators

Im(g1, g2, . . . gm, . . . gk) = (g1, g2, . . . g
−1
m , . . . gk)

πij(g1, g2, . . . gi, . . . gj , . . . gk) = (g1, g2, . . . gj , . . . gi, . . . gk).

Then we have the following lemma.

Lemma 6 The number of connected components of Γk(G) is less than or equal to the number of connected
components of Γ̃k(G).

Proof: Define the operation Tij(g1, g2, . . . gi, . . . gj , . . . gk) = (g1, g2, . . . g
−1
j , . . . gi, . . . gk), i.e., Tij switches

entries gi and gj and inverts gj . Note that Tij = L−ijL
+
jiR

−
ij and

T 2
ij(g1, g2, . . . gi, . . . gj , . . . gk) = (g1, g2, . . . g

−1
i . . . g−1

j . . . gk).

Now note that since Γk(G) is a subgraph of Γ̃k(G), this implies every connected component of Γ̃k(G) splits
into at most 2 components in Γk(G).

As a corollary, if Γ̃k(G) is connected for k ≥ d(G) + 1, then Γk(G) is connected.
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Since m(G) ≥ 1 for all groups, we need only consider Γ̃k(G) to prove the theorem.

Theorem 7 For k ≥ d(G) + m(G), Γ̃k(G) is connected.

Proof:

By definition of m = m(G), any element (g1, g2, . . . gk) ∈ Γk(G) contains a generating subset of m elements
gi1 , gi2 , . . . gim

. Use the operators πij to obtain

(g1, g2, . . . gk) → (gi1 , gi2 , . . . gim
, . . .)

where the remaining k − m elements are those not in {gi1 , gi2 , . . . gim
}. Now since gi1 , gi2 , . . . gim

form a
generating set, we can use the L± and R± operations to obtain

(gi1 , gi2 , . . . gim
, . . .) → (gi1 , gi2 , . . . gim

, 1, 1, . . . 1)
→ (gi1 , gi2 , . . . gim

, h1, h2, . . . hk−m),

where h1, h2, . . . hk−m is a generating set of G (this is possible, since k − m ≥ d). Then we again use the
L±, R± operators to obtain

(gi1 , gi2 , . . . gim
, h1, h2, . . . hk−m) → (1, 1, . . . 1, h1, h2, . . . hk−m).

Therefore, every element in Γ̃k(G) is connected to the element (1, 1, . . . 1, h1, h2, . . . hk−m), implying Γ̃k(G)
is connected.

Now Theorem 5 follows immediately from Lemma 6 and Theorem 7. We also have the following corollary.

Corollary 8 For k ≥ 2blog2 |G|c,Γk(G) is connected.

The following theorem shows that Γ3(An) contains very large connected components.

Theorem 9 There exists Γ′ ⊂ Γk(An) such that Γ′ is connected for all k ≥ 3 and

|Γ′|
|Γk(An)|

→ 1 as n →∞.

Proof: For k = 3, pick g1, g2, g3, h1, h2, h3 ∈ An uniformly and independently. We will show that with high
probability, the elements (g1, g2, g3), (h1, h2, h3) ∈ Γ3(An) are connected. Since < g1, g2 >= An with high
probability, we can use L±, R± operations to obtain

(g1, g2, g3) → (g1, g2, h3).

Similarly, since h2 and h3 were chosen uniformly, < g1, h3 >=< h2, h3 >= An with high probability, so we
have



Lecture 28: 21 November 2001 4

(g1, g2, h3) → (g1, h2, h3) → (h1, h2, h3).

Since the probability two random elements generate An is at least 1− 1
n , the probability two random elements

are connected is at least 1− 1
3n and the theorem follows.


