18.317 Combinatorics, Probability, and Computations on Groups

Lecture 28

 $Lecturer: \ Igor \ Pak$

Scribe: Fumei Lam

Product Replacement Graphs

Definition 1 Let G be a finite group and let $k \ge d(G)$, where d(G) is the minimum number of generators of G. The product replacement graph $\Gamma_k(G)$ is a graph on k-tuples $(g_1, g_2, \ldots, g_k) \in G^k$ satisfying $\langle g_1, g_2, \ldots, g_k \rangle = G$. The edges of $\Gamma_k(G)$ are

$$\{\overline{g}, R_{ij}^{\pm}(\overline{g})\},\$$
$$\{\overline{g}, L_{ij}^{\pm}(\overline{g})\},\$$

where

$$R_{ij}^{\pm}(g_1, \dots, g_i, \dots, g_j, \dots, g_k) = (g_1, \dots, g_i g_j^{\pm 1}, \dots, g_j, \dots, g_k)\},$$

$$L_{ij}^{\pm}(g_1, \dots, g_i, \dots, g_j, \dots, g_k) = (g_1, \dots, g_j^{\pm 1} g_i, \dots, g_j, \dots, g_k)\}.$$

There are k(k-1) choices for pairs (i, j), and two choices each for R or L and + or -. By allowing vertices in $\Gamma_k(G)$ to contain loops, this implies $\Gamma_k(G)$ is a D- regular graph with D = 4k(k-1).

Example. For $G = Z_p^m$, d(G) = m, the vertices of $\Gamma_m(Z_p^m)$ are matrices

	a_{11}	a_{12}		a_{1m}
A =	a_{21}	a_{22}	•••	a_{2m}
	:	÷	÷	:
	a_{m1}	a_{m2}		a_{mm}

with $det(A) \neq 0, a_{ij} \in F_p$.

The operations R_{ij}^{\pm} and L_{ij}^{\pm} correspond to left multiplication by

$$E^{\pm} = \begin{cases} 1 \text{ on the diagonal} \\ \pm 1 \text{ in entry ij} \\ 0 \text{ otherwise.} \end{cases}$$

Note that since the group is abelian, the operations L and R are the same. So $\Gamma_m(Z_p^m)$ is the Cayley graph $\Gamma(GL(m, p), \{E_{ij}(\pm 1)\})$. Since E^{\pm} has determinant ± 1 , $\Gamma_m(Z_p^m)$ has p-1 connected components, each corresponding to different values for the determinant.

Conjecture 2 If $k \ge d(G) + 1$, then $\Gamma_k(G)$ is connected.

The following weaker conjecture is also unknown.

Conjecture 3 If $k \ge 3$, then $\Gamma_k(S_n)$ is connected.

Lemma 4 (Higman) Let k = 2. Then the conjugacy class of $[g_1, g_2]$ ($\langle g_1, g_2 \rangle = G$) is invariant on connected components of $\Gamma_2(G)$.

Proof: For $(g_1, g_2) \in V(\Gamma_2(G)), \{L^{\pm}(g_1, g_2), R^{\pm}(g_1, g_2)\} = \{(g_1g_2, g_2), (g_1g_2^{-1}, g_2), (g_2g_1, g_2), (g_2^{-1}g_1, g_2)\}.$ Then

$$\begin{split} [g_1g_2,g_2] &= g_1g_2g_2g_2^{-1}g_1^{-1}g_2^{-1} = [g_1,g_2], \\ [g_2g_1,g_2] &= g_2g_1g_2g_1^{-1}g_2^{-1}g_2^{-1} = g_2[g_1,g_2]g_2^{-1} = [g_1,g_2]^{g_2^{-1}}, \\ [g_1g_2^{-1},g_2] &= g_1g_2^{-1}g_2g_2g_1^{-1}g_2^{-1} = [g_1,g_2], \\ [g_2^{-1}g_1,g_2] &= g_2^{-1}g_1g_2g_1^{-1}g_2g_2^{-1} = g_2^{-1}[g_1,g_2]g_2 = [g_1,g_2]^{g_2}. \end{split}$$

Example. Let $G = A_n$ for n odd, k = 2 and consider a = (123...n), b = (123...p) with $p \not| n$.

Then the commutators lie in different conjugacy classes, implying the number of connected components of $\Gamma_2(A_n) \to \infty$ as $n \to \infty$.

Theorem 5 Let m(G) denote the maximum size of a nonredundant generating set. For $k \ge d(G) + m(G)$, $\Gamma_k(G)$ is connected.

In order to prove the theorem, we first define graph $\widetilde{\Gamma}_k(G)$ as the graph $\Gamma_k(G)$ with additional edges defined by the operators

$$I_m(g_1, g_2, \dots g_m, \dots g_k) = (g_1, g_2, \dots g_m^{-1}, \dots g_k)$$
$$\pi_{ij}(g_1, g_2, \dots g_i, \dots g_j, \dots g_k) = (g_1, g_2, \dots g_j, \dots g_i, \dots g_k).$$

Then we have the following lemma.

Lemma 6 The number of connected components of $\Gamma_k(G)$ is less than or equal to the number of connected components of $\widetilde{\Gamma}_k(G)$.

Proof: Define the operation $T_{ij}(g_1, g_2, \ldots, g_i, \ldots, g_j, \ldots, g_k) = (g_1, g_2, \ldots, g_j^{-1}, \ldots, g_i, \ldots, g_k)$, i.e., T_{ij} switches entries g_i and g_j and inverts g_j . Note that $T_{ij} = L_{ij}^- L_{ij}^+ R_{ij}^-$ and

$$T_{ij}^2(g_1, g_2, \dots g_i, \dots g_j, \dots g_k) = (g_1, g_2, \dots g_i^{-1} \dots g_j^{-1} \dots g_k).$$

Now note that since $\Gamma_k(G)$ is a subgraph of $\widetilde{\Gamma}_k(G)$, this implies every connected component of $\widetilde{\Gamma}_k(G)$ splits into at most 2 components in $\Gamma_k(G)$.

As a corollary, if $\widetilde{\Gamma}_k(G)$ is connected for $k \ge d(G) + 1$, then $\Gamma_k(G)$ is connected.

Since $m(G) \ge 1$ for all groups, we need only consider $\widetilde{\Gamma}_k(G)$ to prove the theorem.

Theorem 7 For $k \ge d(G) + m(G)$, $\widetilde{\Gamma}_k(G)$ is connected.

Proof:

By definition of m = m(G), any element $(g_1, g_2, \dots, g_k) \in \Gamma_k(G)$ contains a generating subset of m elements $g_{i_1}, g_{i_2}, \dots, g_{i_m}$. Use the operators π_{ij} to obtain

$$(g_1, g_2, \ldots g_k) \rightarrow (g_{i_1}, g_{i_2}, \ldots g_{i_m}, \ldots)$$

where the remaining k - m elements are those not in $\{g_{i_1}, g_{i_2}, \ldots, g_{i_m}\}$. Now since $g_{i_1}, g_{i_2}, \ldots, g_{i_m}$ form a generating set, we can use the L^{\pm} and R^{\pm} operations to obtain

$$(g_{i_1}, g_{i_2}, \dots, g_{i_m}, \dots) \quad \to \quad (g_{i_1}, g_{i_2}, \dots, g_{i_m}, 1, 1, \dots, 1) \\ \quad \to \quad (g_{i_1}, g_{i_2}, \dots, g_{i_m}, h_1, h_2, \dots, h_{k-m}),$$

where $h_1, h_2, \ldots h_{k-m}$ is a generating set of G (this is possible, since $k - m \ge d$). Then we again use the L^{\pm}, R^{\pm} operators to obtain

$$(g_{i_1}, g_{i_2}, \dots, g_{i_m}, h_1, h_2, \dots, h_{k-m}) \to (1, 1, \dots, 1, h_1, h_2, \dots, h_{k-m}).$$

Therefore, every element in $\widetilde{\Gamma}_k(G)$ is connected to the element $(1, 1, \ldots, 1, h_1, h_2, \ldots, h_{k-m})$, implying $\widetilde{\Gamma}_k(G)$ is connected.

Now Theorem 5 follows immediately from Lemma 6 and Theorem 7. We also have the following corollary.

Corollary 8 For $k \ge 2\lfloor \log_2 |G| \rfloor$, $\Gamma_k(G)$ is connected.

The following theorem shows that $\Gamma_3(A_n)$ contains very large connected components.

Theorem 9 There exists $\Gamma' \subset \Gamma_k(A_n)$ such that Γ' is connected for all $k \geq 3$ and

$$\frac{|\Gamma'|}{|\Gamma_k(A_n)|} \to 1 \text{ as } n \to \infty.$$

Proof: For k = 3, pick $g_1, g_2, g_3, h_1, h_2, h_3 \in A_n$ uniformly and independently. We will show that with high probability, the elements $(g_1, g_2, g_3), (h_1, h_2, h_3) \in \Gamma_3(A_n)$ are connected. Since $\langle g_1, g_2 \rangle = A_n$ with high probability, we can use L^{\pm}, R^{\pm} operations to obtain

$$(g_1, g_2, g_3) \to (g_1, g_2, h_3).$$

Similarly, since h_2 and h_3 were chosen uniformly, $\langle g_1, h_3 \rangle = \langle h_2, h_3 \rangle = A_n$ with high probability, so we have

$$(g_1, g_2, h_3) \to (g_1, h_2, h_3) \to (h_1, h_2, h_3)$$

Since the probability two random elements generate A_n is at least $1 - \frac{1}{n}$, the probability two random elements are connected is at least $1 - \frac{1}{3n}$ and the theorem follows.