18.317 Combinatorics, Probability, and Computations on Groups

Lecture 26

Lecturer: Igor Pak

Scribe: Igor Pavlovsky

Babai's Algorithm continued: escape time

Last time, we proved

Theorem 1 Let C be a subset of the group G, $S = S^{-1}$ a symmetric generating set, $\pi = U(S)$ the uniform distribution on S, and p_{π} the "one-step evolution" of the random walk (i.e. $p_{\pi}\varphi = U(S) \star \varphi$). Then for any probability distribution φ ,

$$\|p_{\pi}\varphi\|^{2} \leq \left(1 - \frac{|G \setminus C|}{2 \cdot A \cdot |G|}\right) \cdot \|\varphi\|^{2}$$

where $A = d \cdot |S| \cdot \max_{s \in S} \max_{g \in \bar{C}} \mu_s(g), d = diam(\bar{C}, G).$

We will use this theorem to bound the escape time of a random walk X_t generated by S. For a subset C of G, set

$$\varphi_t(g) = \Pr[X_t = g \text{ and } X_i \in C \ \forall i = 1 \dots t]$$

Obviously, supp $\varphi_t \subset C$, $\|\varphi_0\| \leq 1$ (1 if C contains 1_G , 0 otherwise) and

$$\varphi_{t+1}(g) = \begin{cases} (p_{\pi}\varphi_t)(g) & \text{if } g \in C\\ 0 & \text{otherwise} \end{cases}$$

Inductively applying the above theorem, conclude

Corollary 2 $\|\varphi_t\|^2 \leq \left(1 - \frac{|G \setminus C|}{2 \cdot A \cdot |G|}\right)^t$

Given a bound $\|\varphi_t\|^2 \leq \epsilon$, we'd like to bound the "non-escape" probability $p = \sum_{g \in C} \varphi_t(g)$. It is clear that the worst situation is when $\varphi_t(g) = \frac{p}{|C|}$ is uniform on C. In that case, $\|\varphi_t\|^2 = \sum_{g \in C} (\varphi_t(g))^2 = |C| \frac{p^2}{|C|^2} = \frac{p^2}{|C|}$. Hence, $p^2 \leq |C|\epsilon$. In other words:

Lemma 3 If
$$\|\varphi_t\|^2 \leq \frac{\alpha^2}{|C|}$$
, then $\Pr[X_1, \dots, X_t \in C] \leq \alpha$.

Combining the last two results, obtain

Corollary 4 Suppose
$$|C| \leq |G|/2$$
. Then $\Pr[X_1, \ldots, X_t \in C] \leq \left(1 - \frac{1}{4A}\right)^{t/2} \sqrt{|C|}$.

The first tool for our main escape-time theorem is now ready:

Proposition 5 Let C be a subset of a finite group G, let $\{X_t\}_t$ be a random walk on G w.r.t. some symmetric generating set. Suppose $|C| \leq |G|/2$. Then $\Pr[X_1, \ldots, X_t \in C] \leq \frac{1}{e}$ for $t \geq 4A(\log |C|+2)$.

The following result will provide the remaining tool.

Proposition 6 Let $C = C^{-1}$ be a symmetric subset of a finite group G, let $\{X_t\}_t$ be a random walk on G w.r.t. some (arbitrary) generating set, and suppose $\Pr[X_t \in C^2 \text{ for all } 1 \le t \le T] \le 1-p$. Then for $m \ge 2T$,

$$\frac{1}{m}\sum_{t=1}^{m} \Pr[X_t \notin C] \ge \frac{p}{p+1} \cdot \frac{T}{m}$$

Proof: Set τ to be the hitting time of $G \setminus C^2$, i.e. the first t with $X_t \notin C^2$; then $\Pr[\tau \leq T] \geq p$. Note that if $\tau \leq T$, then $\{\tau, \tau + 1, \ldots, \tau + T - 1\} \subset \{1, \ldots, m\}$. Set $z = X_{\tau}$ and observe $(z \cdot C) \cap C = \emptyset$. The idea is that once the random walk wanders outside of C and in fact to a point z outside of the much bigger C^2 , it is likely to stay in a C-neighborhood of z (which is outside of C!) for some time. Compute:

$$\frac{1}{m} \sum_{t=1}^{m} \Pr[X_t \notin C] \geq \frac{1}{m} \Pr[\tau \le T] \cdot \sum_{t=\tau}^{\tau+T-1} \Pr[zX_t \in zC]$$

$$\geq \frac{p}{m} \sum_{t=\tau}^{\tau+T-1} \Pr[X_t \in C] \geq \frac{p}{m} \left(\sum_{t=1}^{m} \Pr[X_t \in C] - (m-T) \cdot 1 \right)$$

$$\geq \frac{p}{m} \left(T - \sum_{t=1}^{m} \Pr[X_t \notin C] \right)$$

Here in the first line we used that $X_{\tau+t}$ has the distribution of $z \cdot X_t$, and in the second line that the m-T extra terms $\Pr[X_t \in C]$ on the right all are ≤ 1 . Now denote by q the expectation in question: $q = \frac{1}{m} \sum_{t=1}^{m} \Pr[X_t \notin C]$. The above inequality translates into $q \geq p\left(\frac{T}{m} - q\right)$. Solve for q.

When m = 2T and $p = 1 - \frac{1}{e}$, the proposition gives $q \ge \frac{e-1}{2e-1} \cdot \frac{1}{2} > \frac{1.5}{5} \cdot \frac{1}{2} > \frac{1}{8}$. Hence, at last,

Theorem 7 Let $C = C^{-1}$ be a symmetric subset of a finite group G, with $|C^2| \leq |G|/2$. Let $\{X_t\}_t$ be a random walk on G w.r.t. some symmetric generating set. Then for $2 \cdot T \geq 2 \cdot 4A(\log |C|^2 + 2) = O(16 \log |C|)$, the escape-expectation is "large":

$$\frac{1}{2T} \sum_{t=1}^{2T} \Pr[X_t \notin C] > \frac{1}{8}$$

Therefore, in Babai's Algorithm, run the random walk on G for a random $\alpha \in [1 \dots L]$ steps $(L = O(\log^3 |G|))$ as before, $> O(\log |G|)$. At the end of many -1/8th - of $l = O(16 \log |G|)$ such runs, we expect to wonder away from any "small" subset. Done!