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Theorem 1 (This is a special case of the theorem from last class.)
Suppose T' = T'(G, S), v = set of paths in T, and v = {7,: path from id to x}. Also suppose that w, T are
symmetric, s C support(r), diam v = max, |v.| = d and ps(x) = number of generators s in vy, = $;,Siy -

Then Ex(p,p) > (1/]A]) - Ex (v, p) where A = d - maxges(maxgeq ps(x))/7(s).

We shall prove the following important corollary from the Theorem.

Lemma 2 Suppose Exz(p,¢) < A-E:(p,¢) Vo. Then
1- XN <A(1—N),
where \; are the eigenvalues of M.
For every probability distribution 7, consider the matrix
My = (auy)|G|x|G| Gay = T(27'Y)
Here it is important 7 is symmetric so all eigenvectors are real: 1 =X g > Ay > -+ > —1.

Recall that E:(p, ) = (I — Pr)p, ), where P, is exactly convolution with 7. Then M, is then ex-
actly the matrix of that operation.
Consider the scalar product of a function and an operator on that function.

Lets call this operation Q = I — P;.

Lemma 3 For every symmetric operator @Q,

is equal to the smallest eigenvalue of Q.

Proof: To see this let us look at it the other way. We see easily from linear algebra that max,(Qp, ©)/{¢, @)
is just the maximal eigenvalue of ). Similarly

(Qp, ) . (Qp,0)

min = min =\
e (o) e Te=0 (0, 0)

We just need one more well known result from linear algebra to complete the proof of Lemma 2.
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Theorem 4 (min-max principle)
Let Q be a symmetric linear operator on V with eigenvalues qo < ¢1 < -+ < qn. Let m(W) = min{{(Qf, f)/{f, [) :
feW CV}. Then

¢; = max{m(W) : dim(W) = i}

This follows when you consider vector spaces generated by first ¢ eigenvectors.

This is all we need to complete the proof of Lemma 2. Indeed, Theorem 4 implies: 1 — X < Al = N).
Therefore A\ <1—(1—X;)/A

Let 7 = U(G) = uniform distribution on the group, and let # = U(S) be a uniform distribution on the
generating set. Assume our generating set is the whole group (S = G). Then the transition matrix M; is
given by
1 1 1
1111
G|

This matrix has an eigenvalue of 1. But, because it also has rank 1, we know that all remaining eigenvalues
are 0. Thus, A\g = 1, \; =0, and therefore A\; = 0. Finally, we conclude \; <1—1/A4

Recall that
A = d - maxmax s (2)
s€S geG T(s)

where d = diameter(v), and 7(s) = 1/|S| since 7 is the uniform distribution. Therefore,

A=d- |S| 'Igleag,(N’Y(S7G)a

and we obtain:

Theorem 5 Let G be a finite group, let S = S™! be a symmetric generating set, and let T =T(G,S) be a
Cayley graph with diameter d. Then

1 1 1

<1 <1—
A= 2|9

A <1-— -—_
L d"5|'N7_

where N, = maxses Ny(5,G).

Corollary 6
a) The relazation time 7 =1/(1—X1) <d-|S|-N,.
b) The mizing time of the lazy random walk W on T'(G,S) satisfies:
73 < d-|S|- Nylog|G| < d*|S|log|G

Part b) in the corollary follows from part a) and 75 < 71log|G|, where * refers to the lazy random
walk. Now, let us consider several special cases

Example 1 Let G =Z,, S = {£1}.
The corollary gives mix = O(n?log(n)), which is slightly weaker from the tight bound mix = O(n?).
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Example 2 Let G =275, S ={(a1, - ,a,) : a; =1 and the rest are 0, for 1 <i < n}.
To calculate the mixing time we need the diameter (d) and |S|. Since d=n, and |S| = n, we obtain

7 < &IS|log |G| = O(n).

On the other hand, a stronger inequality 75 < d|S|N,log|G| gives us a better (but still not great) upper
bound. Indeed, since N, = 1, we get 75 < O(n?®). This should be compared with 7§ = O(nlogn) we
obtained by a stopping times argument.

Example 3 Let G = S,,, R = {(12)(13)---(1n)} Consider d = diam I'(S,, R)). The largest distance to
identity has a permutation ¢ = (23)(45)---(2m,2m + 1),n =2m + 1.
This implies that
diamI'(S,, R) =~ 3/2n+ O(1).
We also have |S|=n—1=0(n), and log|G| = O(nlog(n)), so, mix < d?|R|log|G| < O(n*log(n)).

On the other hand, we know that IV, is small. In fact, an easy check shows that IV, is at most 2, and so

mix < d|R| N, log|G| = O(n®log(n))
Recall that by a stopping time argument we obtained a tight upper bound of O(nlogn) in this case.

Example 4 Let G=5,, R={(ij):1<i<j<n}

We can do a similar stopping argument to show that in fact mix= Cnlog(n).

However, the upper bound given by corollary is not nearly that good. We have: |R| = O(n?), d = O(n),
and N, = 1. Therefore, have mix< d N, |R|log |G| = O(n*log(n)).

This is another example of weakness of the bound given by Corollary 6. The larger the generating set, the
bigger the bound on the mixing time. This is unfortunate, as the larger the generating set, the smaller the
mixing time tends to be.

Multicomodity flows

Imagine we have an industrial structure that looks like a Cayley graph, and each place has to trade com-
modities with the other places. In particular between any two plans 1 commodity must flow. However, the
1 unit flow along different paths. All that matters is that the sum total of the flow is 1 unit (so the flows
look like a probability distribution on the paths between any two sites.)

Let v = {~, = flow from id to x in G}. So ~y, can consist of several different paths so long as the flows add to 1.
N, = max,cg maxgzes ts(7z) (= expected number of times s occurs in a path from id to )

Claim Theorem 1 and Corollary 6 remain correct under this generalization.

Corollary 7 IfT' =T(G, S) is vertex transitive. (e.g. if H CAut(G) then H acts transitively on S)
Then the relazation time 71 = O(d?), and the mizing time 73 = O(d?log|G|)

Indeed, consider a uniform distribution on all paths giving a shortest decomposition of an element. Then
N, =d/|S|, and we have d|S|N, = d?. In a special case of the Example 4 the corollary gives O(n?logn)
bound now.



