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1 Dirichlet forms and mixing time

Let G be a finite group, and let V' be the vector space of real-valued functions from G. There is a natural
inner product on this space

(6.0) = D pla)i(z) = |GIE(X)p(X)

z€G

where X is chosen from g according to uniform measure. Let m be a probability distribution on G, and let
P denote the transition kernel of the random walk {X,} that moves from x to zy in every step, where y is
distributed according to w. Just like any other transition kernel, P, acts on the space of functions on G as
follows

[Prel (z) = Y play)m(y) = Ble(X1) | Xo = z].
yeG

Define the support of ¢ € V' in the usual way,

supp(p) = {z € G | p(x) # 0}.

We now define the Dirichlet form

Ex(p,0) = (I = Pr)p, p) = |GIE [(p(Xo) — »(X1)) p(Xo)]

where now X is chosen according to uniform distribution on G. Note that if Zy, Z; are real-valued random
variables with the same distribution, then

E[(Zy — Z1)Z0) = %E(ZO - 7))~

Since the uniform distribution is stationary with respect to convolution, Xy and X; have the same distribu-
tion, and we may apply this to o(Xy), @(X1) to get the alternative formula for the Dirichlet form

x.0) = DB(p(X0) ~ p(X)2 = L Y (ole) — plan))Pm).
z,y€G

Now let I' = T'(G, S) be a Cayley graph of G with respect to a symmetric generator set S. Let v be a
function that assigns to each y € G a path from the identity to y in I'. We will assume that v is geodesic,
that is its values are shortest paths. Let ps(y) = ps(y,~y) denote the number of times a generator s appears
in the decomposition

Y= 85182...5¢ (1)

along the path v(y). For C C G Let

N,(s,C) = S(z7y).
+(s,C) ;g?éu((x Y)

We have a following version of a theorem by Diaconis and Saloff-Coste.
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Theorem 1 (Comparison of Dirichlet forms) Let C C G, let C = C UAJC, and let d = diam(C).
Consider m, T symmetric probability distributions on G, and let S C supp(w). Then

1
Enlprp) = 7Ex(0,9)
where o
A = dmax M
ses  7(s)

Proof: Let y € G, and write y in the form (1). We can write

e(x) — p(zy) = [p(zs) —p(zs1)] + ...+ [p(xs1 ... 501 — p(xy)].
It follows, for example, by the Cauchy-Schwarz inequality that

¢
(p(x) = p(@y))® < ) (p(asi...si1) = p(zst...s:)°

i=1

where ¢* is the number of nonzero terms in the sum, and is bounded above by d =diam(C), since v is
geodesic. Summing this inequality over x € G we get

Y (p(@) —play)? <d Y Ny(s,0)(0(2) - p(29))".

zeG z€G,seS

Since this holds for all y € G, we may average the left hand side with respect to y with weights 7(y) to get

Y (p@) =) *aly) <d Y Ny(s,0)(0(2) - p(29))

z,yeCG z€G,seS

Finally, the right hand side is clearly bounded by

A Y (0(2) = plzs)m(s)

z€G,s€S
and the statement of the theorem follows. [ |

By the way, the symmetry assumption for S was not used.



