18.317 Combinatorics, Probability, and Computations on Groups

Lecture 14

Lecturer: Igor Pak

Scribe: C. Goddard

Hall Bases Continued

Last lecture we finished with the theorem:

Theorem 1. Given a ω - complete word in $\overline{B} = (B_1, B_2, \ldots)$, a Hall Basis in G, then $\omega^{\overline{\alpha}}$ - uniform in G.

Now two lectures ago, we wanted to prove the following lemma:

Lemma 2.
$$\varkappa$$
 for $U(n,p) = \left\{ \begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} * \in \mathbb{F}_p \right\}$ is strong uniform.

We proved a corollary to this:

Corollary 3. The mixing time for a random walk on $U(n, p) = O(n^2 \log n)$.

Now we want to prove Theorem $1 \Rightarrow$ Lemma 2.

Proof: Let G = U(n, p), that is the group of $n \times n$ upper triangular matrices with 1's on the diagonal. Consider the basis: $\overline{B} = (B_1, B_2, \dots, B_{n-1})$ where

$$B_{i} = \left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \text{ with a 1 in the } i\text{th diagonal.} \right\}$$

Thus $|B_i| = n - i$.

Now we have to check \overline{B} is a Hall basis for U(n, p). This is "obvious" since we know that $\langle \gamma_i(B_i) \rangle = H_i$ since, firstly $\langle B_i \rangle = G_i$, where G_i consists of 0's everywhere below the *i*th diagonal except the main diagonal, and H_i is the quotient G_{i-1}/G_i , so $H_i \cong (\mathbb{Z}_p)^{n-i}$.

For the mixing time, we know $X_t = E_{i_1j_1}(\alpha_1) \cdot E_{i_2j_2}(\alpha_2) \cdot \ldots \cdot E_{i_tj_t}(\alpha_t)$ by definition since

$$E_{ij}(\alpha) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \alpha & 0 \\ \vdots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$
 is 1's on the diagonal and 0's elsewhere except α in the *ij*th position

Now we want to look at \varkappa , which is the first time all the indices i, j occur in this product. So in the notation of the previous lecture, $\Lambda = \{(i, j), 1 \le i < j \le n\}$. Say that there are N words that contain all i, j and

look at the complete words. Thus,

$$\Pr(X_t = h | \varkappa = t) = \frac{1}{N} \cdot \sum_{\omega} \Pr(\omega^{\overline{\alpha}} = h)$$

where we sum over the complete words ω of length t such that no shorter word is a complete word. Therefore from Theorem 1, ω is uniform. So,

$$\Pr(X_t = h | \varkappa = t) = \frac{1}{N} \cdot N \cdot \frac{1}{|G|} = \frac{1}{|G|}$$

Thus, \varkappa is strong uniform.

Note, we can generalise this to any nilpotent group with generators corresponding to our generators, and the mixing time = $O(|\Lambda| \log |\Lambda|)$.

Brief Outline of Open Problems for Research Projects

Hamilton Paths in Cayley Graphs

There are two conflicting conjectures relating to the Hamilton paths in Cayley graphs, namely:

Conjecture 4. (Lovasz) $\forall G, \langle S \rangle = G, S = S^{-1}$, the Cayley graph $\Gamma(G, S)$ contains a Hamilton path.

Conjecture 5. (Babai) $\exists \alpha > 0$ such that \exists infinitely many Cayley graphs with no paths on length $> (1 - \alpha) \cdot \#$ vertices.

Aim: try and find out which one of these is true on a special groups and generating sets.

Examples: 1) Try Hall's 19 (up to automorphisms) Cayley graphs of A_5 with 2 generators (aim for negative answer.)

- 2) Try S_n and conjugacy classes (aim for positive answer.)
- 3) Try general nilpotent groups (positive.)

4) Try three involutions in general groups (positive.) NB: every finite simple group can be generated by three involutions.

5) Try wreath and semidirect product of finite groups (positive; easy for direct products.)

Diameter Problem

Suppose we have A_n , S_n and $\langle S \rangle = A_n$, where S is a set of generators.

Conjecture 6. diameter $(A_n, S) < cn^2$, c - constant. Also works for S_n .

Look at the following weaker versions of this:

1. For the worst case when |S| = 2, we have the following:

Theorem 7. (Babai, Hetyei) diam $< e^{\sqrt{n} \log n(1+o(1))}$. This gives a bound of the maximum order of permuations in S_n .

Aim: Find something similar for SL(n, p).

Conjecture 8. $G - simple \Rightarrow diam = O((\log |G|)^c).$

So diam $\leq (n^2 \log p)^2$ which would be hard to prove, but e^n may be manageable.

2. Average Case.

Theorem 9. (Dixon) $\langle \sigma_1, \sigma_2 \rangle = A_n$ with $\Pr \to 1$ as $n \to \infty$.

Theorem 10. (Babai-Seress) diam $(\Gamma(A_n, \{\sigma_1, \sigma_2\})) = n^{O(\log n)}$ w.h.p.

Aim: get something close for PSL(n, p).

3. Problem.

Conjecture 11. (Kantor) diam $(\Gamma(A_n, \{\sigma_1, \sigma_2\})) = O(n \log n) w.h.p.$

Some people believe this is not true.

Question: True or False?

Weaker version: Prove that $\Gamma(A_n, \{\sigma_1, \sigma_2\})$ are NOT exanders w.h.p.

Random Graphs vs Random Cayley Graphs

1.

Theorem 12. (Ramsey Theory) In random undirected graph Γ with *n* vertices, there exists a $m = c \cdot \log n$ complete subgraph in Γ and a $m = c \cdot \log n$ complete subgraph in $\overline{\Gamma}$ w.h.p.

Now suppose Γ is a random Cayley graph over a fixed group G. People believe the same is true.

Aim: prove it (N. Alon proved the result with $m = c\sqrt{\log n}$.)

2.

Theorem 13. Γ - random graph on n vertices \Rightarrow Aut $(\Gamma) = 1$ with high probability.

NB: Erdős and Rényi proved that one has to remove $\theta(n^2)$ edges before a nontrivial automorphism appears.

Question: if Γ - random Cayley graph, is Aut(Γ) = G with high probability?

L. Goldberg and M. Jerrum conjecture this for $G = \mathbb{Z}_n$.

Percolation on finite Cayley graphs

Fix a Cayley graph Γ and probability p. Delete edges with $\Pr = (1 - p)$ independently and look at the connected components. Say $\Gamma \supset$ large cluster if \exists connected component $> \frac{1}{2}|\Gamma|$.

Conjecture 14. (Benjamini) If diam(Γ) < $c \cdot \frac{|G|}{\log^2 |G|}$, then Cayley graph Γ contains large cluster with $\Pr > \frac{1}{2}$ for $p < 1 - \varepsilon$ where ε is independent of the size of the graph.

Itai Benjamini confirms the conjecture for abelian groups.

Question: Is this true for G nilpotent? What about S_n ?