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Lecture 14
Lecturer: Igor Pak Scribe: C. Goddard

Hall Bases Continued

Last lecture we finished with the theorem:

Theorem 1. Given a ω - complete word in B = (B1, B2, . . .), a Hall Basis in G, then ωα - uniform in G.

Now two lectures ago, we wanted to prove the following lemma:

Lemma 2. κ for U(n, p) =




1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1

 ∗ ∈ Fp

 is strong uniform.

We proved a corollary to this:

Corollary 3. The mixing time for a random walk on U(n, p) = O(n2 log n).

Now we want to prove Theorem 1 ⇒ Lemma 2.

Proof: Let G = U(n, p), that is the group of n × n upper triangular matrices with 1’s on the diagonal.
Consider the basis: B = (B1, B2, . . . , Bn−1) where

Bi =




1 0 · · · 0

0 1 1
...

...
. . . 0

0 · · · 0 1

 with a 1 in the ith diagonal.


Thus |Bi| = n− i.

Now we have to check B is a Hall basis for U(n, p). This is “obvious” since we know that <γi(Bi)> = Hi

since, firstly <Bi> = Gi, where Gi consists of 0’s everywhere below the ith diagonal except the main
diagonal, and Hi is the quotient Gi−1/Gi, so Hi

∼= (Zp)n−i.

For the mixing time, we know Xt = Ei1j1(α1) · Ei2j2(α2) · . . . · Eitjt
(αt) by definition since

Eij(α) =


1 0 · · · 0
0 1 α 0
...

. . . 0
...

0 · · · 0 1

 ie 1’s on the diagonal and 0’s elsewhere except α in the ijth position

Now we want to look at κ, which is the first time all the indices i, j occur in this product. So in the notation
of the previous lecture, Λ = {(i, j), 1 ≤ i < j ≤ n}. Say that there are N words that contain all i, j and
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look at the complete words. Thus,

Pr(Xt = h|κ = t) =
1
N
·
∑
ω

Pr(ωα = h)

where we sum over the complete words ω of length t such that no shorter word is a complete word. Therefore
from Theorem 1, ω is uniform. So,

Pr(Xt = h|κ = t) =
1
N
·N · 1

|G|
=

1
|G|

Thus, κ is strong uniform.

Note, we can generalise this to any nilpotent group with generators corresponding to our generators, and
the mixing time = O(|Λ| log |Λ|).

Brief Outline of Open Problems for Research Projects

Hamilton Paths in Cayley Graphs

There are two conflicting conjectures relating to the Hamilton paths in Cayley graphs, namely:

Conjecture 4. (Lovasz) ∀G, <S> = G, S = S−1, the Cayley graph Γ(G, S) contains a Hamilton path.

Conjecture 5. (Babai) ∃α > 0 such that ∃ infinitely many Cayley graphs with no paths on length >
(1− α) ·#vertices.

Aim: try and find out which one of these is true on a special groups and generating sets.

Examples: 1) Try Hall’s 19 (up to automorphisms) Cayley graphs of A5 with 2 generators (aim for negative
answer.)

2) Try Sn and conjugacy classes (aim for positive answer.)

3) Try general nilpotent groups (positive.)

4) Try three involutions in general groups (positive.) NB: every finite simple group can be generated by
three involutions.

5) Try wreath and semidirect product of finite groups (positive; easy for direct products.)

Diameter Problem

Suppose we have An, Sn and <S> = An, where S is a set of generators.

Conjecture 6. diameter(An, S) < cn2, c - constant. Also works for Sn.

Look at the following weaker versions of this:

1. For the worst case when |S| = 2, we have the following:

Theorem 7. (Babai, Hetyei) diam < e
√

n log n(1+o(1)). This gives a bound of the maximum order of
permuations in Sn.
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Aim: Find something similar for SL(n, p).

Conjecture 8. G - simple ⇒ diam = O((log |G|)c).

So diam ≤ (n2 log p)2 which would be hard to prove, but en may be manageable.

2. Average Case.

Theorem 9. (Dixon) <σ1, σ2> = An with Pr → 1 as n →∞.

Theorem 10. (Babai-Seress) diam(Γ(An, {σ1, σ2})) = nO(log n) w.h.p.

Aim: get something close for PSL(n, p).

3. Problem.

Conjecture 11. (Kantor) diam(Γ(An, {σ1, σ2})) = O(n log n) w.h.p.

Some people believe this is not true.

Question: True or False?

Weaker version: Prove that Γ(An, {σ1, σ2}) are NOT exanders w.h.p.

Random Graphs vs Random Cayley Graphs

1.

Theorem 12. (Ramsey Theory) In random undirected graph Γ with n vertices, there exists a
m = c · log n complete subgraph in Γ and a m = c · log n complete subgraph in Γ w.h.p.

Now suppose Γ is a random Cayley graph over a fixed group G. People believe the same is true.

Aim: prove it (N. Alon proved the result with m = c
√

log n.)

2.

Theorem 13. Γ - random graph on n vertices ⇒ Aut(Γ) = 1 with high probability.

NB: Erdős and Rényi proved that one has to remove θ(n2) edges before a nontrivial automorphism
appears.

Question: if Γ - random Cayley graph, is Aut(Γ) = G with high probability?

L. Goldberg and M. Jerrum conjecture this for G = Zn.

Percolation on finite Cayley graphs

Fix a Cayley graph Γ and probability p. Delete edges with Pr = (1 − p) independently and look at the
connected components. Say Γ ⊃ large cluster if ∃ connected component > 1

2 |Γ|.

Conjecture 14. (Benjamini) If diam(Γ) < c · |G|
log2 |G| , then Cayley graph Γ contains large cluster with

Pr > 1
2 for p < 1− ε where ε is independent of the size of the graph.

Itai Benjamini confirms the conjecture for abelian groups.

Question: Is this true for G nilpotent? What about Sn?


