Hall Bases Continued

Last lecture we finished with the theorem:

Theorem 1. Given a ω-complete word in $\mathcal{B} = (B_1, B_2, \ldots)$, a Hall Basis in G, then $\omega^\mathcal{F}$ - uniform in G.

Now two lectures ago, we wanted to prove the following lemma:

Lemma 2. κ for $U(n, p) = \{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} * \in \mathbb{F}_p\}$ is strong uniform.

We proved a corollary to this:

Corollary 3. The mixing time for a random walk on $U(n, p) = O(n^2 \log n)$.

Now we want to prove Theorem 1 \Rightarrow Lemma 2.

Proof: Let $G = U(n, p)$, that is the group of $n \times n$ upper triangular matrices with 1’s on the diagonal. Consider the basis: $\mathcal{B} = (B_1, B_2, \ldots, B_{n-1})$ where

$$ B_i = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix} \text{ with a 1 in the } i\text{th diagonal.} $$

Thus $|B_i| = n - i$.

Now we have to check \mathcal{B} is a Hall basis for $U(n, p)$. This is “obvious” since we know that $<\gamma_i(B_i)> = H_i$ since, firstly $<B_i> = G_i$, where G_i consists of 0’s everywhere below the ith diagonal except the main diagonal, and H_i is the quotient G_{i-1}/G_i, so $H_i \cong (\mathbb{Z}_p)^{n-i}$.

For the mixing time, we know $X_t = E_{i_1j_1}(\alpha_1) \cdot E_{i_2j_2}(\alpha_2) \cdot \ldots \cdot E_{i_kj_k}(\alpha_k)$ by definition since

$$ E_{ij}(\alpha) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \alpha & 0 \\ \vdots & \vdots & 0 & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} \text{ ie 1’s on the diagonal and 0’s elsewhere except } \alpha \text{ in the } ij\text{th position} $$

Now we want to look at κ, which is the first time all the indices i, j occur in this product. So in the notation of the previous lecture, $\Lambda = \{(i, j), 1 \leq i < j \leq n\}$. Say that there are N words that contain all i, j and
look at the complete words. Thus,

\[\Pr(X_t = h | \kappa = t) = \frac{1}{N} \cdot \sum_{\omega} \Pr(\omega^\kappa = h) \]

where we sum over the complete words \(\omega \) of length \(t \) such that no shorter word is a complete word. Therefore from Theorem 1, \(\omega \) is uniform. So,

\[\Pr(X_t = h | \kappa = t) = \frac{1}{N} \cdot N \cdot \frac{1}{|G|} = \frac{1}{|G|} \]

Thus, \(\kappa \) is strong uniform. \(\blacksquare \)

Note, we can generalise this to any nilpotent group with generators corresponding to our generators, and the mixing time = \(O(|\Lambda| \log |\Lambda|) \).

Brief Outline of Open Problems for Research Projects

Hamilton Paths in Cayley Graphs

There are two conflicting conjectures relating to the Hamilton paths in Cayley graphs, namely:

Conjecture 4. (Lovasz) \(\forall G, <S> = G, S = S^{-1}, \) the Cayley graph \(\Gamma(G, S) \) contains a Hamilton path.

Conjecture 5. (Babai) \(\exists \alpha > 0 \) such that \(\exists \) infinitely many Cayley graphs with no paths on length > \((1 - \alpha) \cdot \#\text{vertices} \).

Aim: try and find out which one of these is true on a special groups and generating sets.

Examples: 1) Try Hall’s 19 (up to automorphisms) Cayley graphs of \(A_5 \) with 2 generators (aim for negative answer.)
2) Try \(S_n \) and conjugacy classes (aim for positive answer.)
3) Try general nilpotent groups (positive.)
4) Try three involutions in general groups (positive.) NB: every finite simple group can be generated by three involutions.
5) Try wreath and semidirect product of finite groups (positive; easy for direct products.)

Diameter Problem

Suppose we have \(A_n, S_n \) and \(<S> = A_n \), where \(S \) is a set of generators.

Conjecture 6. \(\text{diameter}(A_n, S) < cn^2, c - \text{constant. Also works for } S_n. \)

Look at the following weaker versions of this:

1. For the worst case when \(|S| = 2 \), we have the following:

Theorem 7. (Babai, Hetyei) \(\text{diam} < e^{\sqrt{\pi \log n(1+o(1))}} \). This gives a bound of the maximum order of permutations in \(S_n \).
Aim: Find something similar for $\text{SL}(n,p)$.

Conjecture 8. G - simple $\Rightarrow \text{diam} = O((\log |G|)^c)$.

So $\text{diam} \leq (n^2 \log p)^2$ which would be hard to prove, but e^n may be manageable.

2. Average Case.

Theorem 9. (Dixon) $<\sigma_1, \sigma_2> = A_n$ with $\Pr \to 1$ as $n \to \infty$.

Theorem 10. (Babai-Seress) $\text{diam}(\Gamma(A_n, \{\sigma_1, \sigma_2\})) = n^{O(\log n)}$ w.h.p.

Aim: get something close for $\text{PSL}(n,p)$.

3. Problem.

Conjecture 11. (Kantor) $\text{diam}(\Gamma(A_n, \{\sigma_1, \sigma_2\})) = O(n \log n)$ w.h.p.

Some people believe this is not true.

Question: True or False?

Weaker version: Prove that $\Gamma(A_n, \{\sigma_1, \sigma_2\})$ are NOT expanders w.h.p.

Random Graphs vs Random Cayley Graphs

1. **Theorem 12. (Ramsey Theory)** In random undirected graph Γ with n vertices, there exists a $m = c \cdot \log n$ complete subgraph in Γ and a $m = c \cdot \log n$ complete subgraph in $\overline{\Gamma}$ w.h.p.

Now suppose Γ is a random Cayley graph over a fixed group G. People believe the same is true.

Aim: prove it (N. Alon proved the result with $m = c \sqrt{\log n}$.)

2. **Theorem 13.** Γ - random graph on n vertices $\Rightarrow \text{Aut}(\Gamma) = 1$ with high probability.

NB: Erdős and Rényi proved that one has to remove $\theta(n^2)$ edges before a nontrivial automorphism appears.

Question: if Γ - random Cayley graph, is $\text{Aut}(\Gamma) = G$ with high probability?

L. Goldberg and M. Jerrum conjecture this for $G = \mathbb{Z}_n$.

Percolation on finite Cayley graphs

Fix a Cayley graph Γ and probability p. Delete edges with $\Pr = (1 - p)$ independently and look at the connected components. Say $\Gamma \supset$ large cluster if \exists connected component $> \frac{1}{2} |\Gamma|$.

Conjecture 14. (Benjamini) If $\text{diam}(\Gamma) < c \cdot \frac{|G|}{\log^c (|G|)}$, then Cayley graph Γ contains large cluster with $\Pr > \frac{1}{2}$ for $p < 1 - \varepsilon$ where ε is independent of the size of the graph.

Itai Benjamini confirms the conjecture for abelian groups.

Question: Is this true for G nilpotent? What about S_n?