HOMEWORK 3 (18.315, FALL 2005)

1) Decide whether a rectangle $[50 \times 60]$ can be tiles with rectangles

a) $[20 \times 15]$ b) $[5 \times 8]$

c) $[6.25 \times 15]$ d) $[2 - \sqrt{2} \times 2 + \sqrt{2}]$

e) Find and prove a general criterion for tileability of a rectangle $[a \times b]$ with rectangular tiles $[p \times q]$.

2) Let u_n be the number of alternating permutations $\sigma \in S_n$, i.e. permutations with $\sigma(1) < \sigma(2) > \sigma(3) < \ldots$ Prove that the circled numbers in the following Pascal-style triangle are u_n . Here each number is the sum of two: one from above and one in the same row in the direction of 0.

FIGURE 1. Triangle to compute numbers u_n .

3) Let $T_n(x, y)$ be the Tutte polynomial of K_n . Prove that $u_n = |T_{n+1}(1, -1)|$.

4) In a spanning tree $t \in K_n$ we say that vertices *i* and *j* form an *inversion* if i < j and *j* lies on the shortest path from *i* to 1. Let inv(t) be the number of inversions in *t*. Define

$$f_n(q) = \sum_{t \in K_n} q^{\mathrm{inv}(t)}$$

Express $f_n(q)$ via $T_n(1, y)$.

5) Let P_n be a polytope in \mathbb{R}^d defined by inequalities $x_i \ge 0, 1 \le i \le n$, and

$$x_i + x_{i+1} \le 1, \quad 1 \le i < n.$$

a) Compute the number of integer points in P_n

- (*Hint:* find a classical combinatorial interpretation).
- b) Compute the volume of P_n

(*Hint:* find a combinatorial interpretation in terms of u_n .)

c) Give a combinatorial interpretation for the number of integer points in $k \cdot P_n$, generalizing part b). Here $k \cdot X = \{k \cdot x \mid x \in X\}$, and $k \in \mathbb{N}$.

6) Ex. 70 on p. 177 in Bollobas, MGT.

This Homework is due on Wednesday October 12 at 4 pm. in my office (2-390) or by e-mail. Please remember to write the name(s) of your collaborators (see collaboration policy).