
HOMEWORK 1 (MATH 61, SPRING 2017)

Solve: RJ, Sec. 2.2 Ex 28, 29, Sec. 2.4 Ex 2, 3, 6, 9, Sec 3.2 Ex 7, 9, 13, 14.
2.2

28. Suppose that there exist positive integers m,n such that m3+2n2 = 36. Then m3 < 36,
and thus m < (36)

1
3 < 4. Since both 2n2 and 36 are even, m3 must be even, so is m.

Thus, m = 2. But this implies n2 = 36− 23 = 28 which is not a square of any positive
integer, which is a contradiction.

29. Suppose that there exist positive integers m,n such that 2m2 + 4n2 − 1 = 2(m + n).
Then the left hand side must be odd, but the right hand side is even.

2.4

2. Base case: 1 · 2 = 2 = 1·2·3
3 .

Inductive step: Suppose 1 ·2+2 ·3+ . . .+n(n+1) = n(n+1)(n+2)
3 for n ≥ 1. We want to

show 1 · 2 + 2 · 3 + . . .+ (n+ 1)(n+ 2) = (n+1)(n+2)(n+3)
3 . By the inductive assumption,

we have

1 · 2 + 2 · 3 + . . . + (n + 1)(n + 2) =
n(n + 1)(n + 2)

3
+ (n + 1)(n + 2)

= (n + 1)(n + 2)
(n

3
+ 1

)
=

(n + 1)(n + 2)(n + 3)

3
.

3. Base case: 1(1!) = 1 = 2!?1.
Inductive step: Suppose 1(1!) + 2(2!) + . . .+n(n!) = (n+ 1)!− 1 for n ≥ 1. We want to
show 1(1!) + 2(2!) + . . .+ (n+ 1)((n+ 1)!) = (n+ 2)!− 1. By the inductive assumption,

1(1!) + 2(2!) + . . . + (n + 1)((n + 1)!) = (n + 1)!− 1 + (n + 1)((n + 1)!)

= (n + 1 + 1)((n + 1)!)− 1 = (n + 2)!− 1.

6. Base case: 13 = 1 =
(
1·2
2

)2
.

Inductive step: Suppose 13 + 23 + . . . + n3 =
(

n(n+1)
2

)2

for n ≥ 1. We want to show

13 + 23 + . . . + (n + 1)3 =
(

(n+1)(n+2)
2

)2

. By the inductive assumption,

13 + 23 + . . . + (n + 1)3 =

(
n(n + 1)

2

)2

+ (n + 1)3

= (n + 1)2
(
n2

4
+ (n + 1)

)
= (n + 1)2

(
n2 + 4n + 4

4

)
= (n + 1)2

(
n + 2

2

)2

=

(
(n + 1)(n + 2)

2

)2

.

9. Base case: 1
22−1 = 1

3 = 3
4 −

1
2(2) −

1
2(3) .

Inductive step: Suppose 1
22−1 + 1

32−1 + . . . + 1
(n+1)2−1 = 3

4 −
1

2(n+1) −
1

2(n+2) for n ≥ 1.

1
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We want to show 1
22−1 + 1

32−1 + . . .+ 1
(n+2)2−1 = 3

4 −
1

2(n+2) −
1

2(n+3) . By the inductive

assumption,

1

22 − 1
+

1

32 − 1
+ . . . +

1

(n + 2)2 − 1
=

3

4
− 1

2(n + 1)
− 1

2(n + 2)
+

1

(n + 2)2 − 1

=
3

4
− 1

2(n + 2)
+

1

n2 + 4n + 3
− 1

2(n + 1)

=
3

4
− 1

2(n + 2)
+

1

(n + 3)(n + 1)
− 1

2(n + 1)

=
3

4
− 1

2(n + 2)
+

1

n + 1

(
1

n + 3
− 1

2

)
=

3

4
− 1

2(n + 2)
+

1

n + 1
· 2− (n + 3)

2(n + 3)

=
3

4
− 1

2(n + 2)
− 1

n + 1
· n + 1

2(n + 3)

=
3

4
− 1

2(n + 2)
− 1

2(n + 3)
.

3.2

7. t2077 = 2(2077)− 1 = 4153.
9. Note tn is the nth odd number. The sum of the first n odd numbers is n2. So,

13. Yes.
14. No.

I. a) In the base case n = 1, we interpret the left hand side as having no factors since the first
factor in the expression is (1− 1

22 ) which is the last factor in the case n = 2. This is a common
mathematical convention. The product of no factors is by convention 1. The right hand side in
the case n = 1 is also 1+1

2·1 = 1, as needed.

In the induction step we assume (1− 1
22 ) · · · (1− 1

n2 ) = n+1
2n . Then,

(1− 1

22
) · · · (1− 1

n2
)(1− 1

(n + 1)2
) = [(1− 1

22
) · · · (1− 1

n2
)](1− 1

(n + 1)2
)

=
n + 1

2n
(1− 1

(n + 1)2
)

=
n + 1

2n
· (n + 1)2 − 1

(n + 1)2

=
n + 1

2n
· ((n + 1)− 1)((n + 1) + 1)

(n + 1)2

=
(n + 1) + 1

2(n + 1)

using the induction hypothesis in the second equality.
b) In the base case n = 1, the left hand side, 13 = 1 and the right hand side, (1)2 = 1 agree.

In the induction step we assume 13 + . . . + n3 = (1 + . . . + n)2 for a particular natural number

n. Recall from class that for every natural number k, 1 + 2 + . . .+ k = k(k+1)
2 . Then using this

fact for k = n in the third equality and k = n + 1 in the fifth equality as well as the induction
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hypothesis in the second equality,

13 + . . . + n3 + (n + 1)3 = [13 + . . . + n3] + (n + 1)3

= (1 + 2 + . . . + n)2 + (n + 1)3

= (
n(n + 1)

2
)2 + (n + 1)3

= (n + 1)2(
n2

4
+ n + 1)

= (n + 1)2(
n2 + 4n + 4

4
)

=
(n + 1)2(n + 2)2

4

= (
(n + 1)(n + 2)

2
)2.

II. [One of many solutions.] Let a1 = a2 = 1 and an+1 = an − an−1. This defines a unique
sequence {an}. Then a3 = 0, a4 = −1, a5 = −1, a6 = 0, a7 = 1, and a8 = 1. So if we define
another sequence bn := an+6, then b1 = a7 = b2 = a8 = 1 and bn+1 = an+7 = an+6 − an+5 =
bn − bn−1 (when n > 1). Therefore the sequence {bn} meets the defining condition of the {an}
and so {bn} = {an}. This means every natural number n, we have an+6 = bn = an.

(The following can be applied to all repeating sequences. Replace 6 with the period) We can
show by induction on a natural number q that for any natural number r we have ar+6q = ar.
We have already proven the first paragraph the base case. In the induction step we assume
ar+6q = ar and using this and the base case for r+6q we have ar+6(q+1) = a(r+6q)+6 = ar+6q =
ar. This completes the induction.

Now for any natural number n, we can divide n by 6 and use this to write n = r + 6q where
r ∈ {1, 2, 3, 4, 5, 6} (r is the remainder when dividing n by 6 unless the remainder is 0, in which
case r = 6). Then an = ar ∈ {1, 0,−1} since we computed the first six terms of the sequence.
In particular, −3 ≤ an ≤ 3.

III. Find closed formulas for elements in the following sequences:
a) 1, 3, 5, 7, 9, 11, . . . =⇒ an = 2n− 1

b) 1,−4, 10,−20, 35,−56 . . . =⇒ bn = (−1)n+1 n(n+1)(n+2)
6

c) 1, 3/2, 6, 3/24, 120, 3/720, . . . =⇒ cn = (2 + (−1)n)n!(−1)n+1

d) 1/4,−4/9, 9/16,−16/25, 25/36, . . . =⇒ dn = (−1)n+1( n
n+1 )2

e) 1, 1/5, 1/21, 1/85, 1/341, 1/1365, . . . =⇒ en = 3
4n−1

IV. For the following sequences, Compute the first 5 elements. Then decide whether they are
or are not increasing, decreasing, nonincreasing, and nondecreasing.

an = n− 3n

−2,−7,−24,−77,−238. decreasing and nonincreasing.

bn = n +
1

n

2, 5
2 ,

10
3 , 17

4 , 26
5 increasing and nondecreasing.

cn = 3− 1

n
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2, 5
2 ,

8
3 ,

11
4 , 14

5 . decreasing and nonincreasing.

dn =
(−1)n

n2

−1, 1
4 ,−

1
9 ,

1
16 ,−

1
25 . None of them.

en =
2n + 3n

13n2

5
13 ,

1
4 ,

35
117 ,

97
208 ,

275
325 None of them (However is increasing and non-

decreasing from the second term onwards).


