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9. For simplicity, assume that the probabilities of the birth of a boy and
of a girl are the same (which is not quite so in reality). For a certain
family, we know that they have exactly two children, and that at least
of them is a boy. What is the probability that they have two boys?

10. (a) CS Write a program to generate a random graph with a given
edge probability p and to find its connected components. For a given
number n of vertices, determine experimentally at which value of p the
random graph starts to be connected, and at which value of p it starts
to have a “giant component” (a component with at least n

2
vertices,

say).

(b) ∗∗Can you find theoretical explanations for the findings in (a)? You
may want to consult the book [12].

10.3 Random variables and their expectation
10.3.1 Definition. Let (Ω, P ) be a finite probability space. By a
random variable on Ω, we mean any mapping f : Ω → R.

A random variable f thus assigns some real number f(ω) to each
elementary event ω ∈ Ω. Let us give several examples of random
variables.

10.3.2 Example (Number of 1s). If Cn is the probability space of
all n-term sequences of 0s and 1s, we can define a random variable
f1 as follows: for a sequence s, f1(s) is the number of 1s in s.

10.3.3 Example (Number of surviving rabbits).Each of n hunt-
ers selects a rabbit at random from a group of n rabbits, aims a gun
at it, and then all the hunters shoot at once. (We feel sorry for
the rabbits but this is what really happens sometimes.) A random
variable f2 is the number of rabbits that survive (assuming that no
hunter misses). Formally, the probability space here is the set of all
mappings α : {1, 2, . . . , n} → {1, 2, . . . , n}, each of them having the
probability n−n, and f2(α) = |{1, 2, . . . , n} \ α({1, 2, . . . , n})|.
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10.3.4 Example (Number of left maxima). On the probability
space Sn of all permutations of the set {1, 2, . . . , n}, we define a
random variable f3: f3(π) is the number of left maxima of a permu-
tation π, i.e. the number of the i such that π(i) > π(j) for all j < i.
Imagine a long-jump contest, and assume for simplicity that each
competitor has a very stable performance, i.e. always jumps the same
distance, and these distances are different for different competitors
(these, admittedly unrealistic, assumptions can be relaxed signifi-
cantly). In the first series of jumps, n competitors jump in a random
order. Then f3 means the number of times the current longest jump
changes during the series.

10.3.5 Example (Sorting algorithm complexity). This random
variable is somewhat more complicated. Let A be some sorting algo-
rithm, meaning that the input of A is an n-tuple (x1, x2, . . . , xn) of
numbers, and the output is the same numbers in a sorted order. Sup-
pose that the number of steps made by algorithm A only depends on
the ordering of the input numbers (so that we can imagine that the
input is some permutation π of the set {1, 2, . . . , n}). This condition
is satisfied by many algorithms that only use pairwise comparisons
of the input numbers for sorting; some of them are frequently used
in practice. We define a random variable f4 on the probability space
Sn: we let f4(π) be the number of steps made by algorithm A for the
input sequence (π(1), π(2), . . . , π(n)).

10.3.6 Definition. Let (Ω, P ) be a finite probability space, and let
f be a random variable on it. The expectation of f is a real number
denoted by E [f ] and defined by the formula

E [f ] =
∑

ω∈Ω

P ({ω})f(ω).

In particular, if all the elementary events ω ∈ Ω have the same
probability (as is the case in almost all of our examples), then the
expectation of f is simply the arithmetic average of the values of f
over all elements of Ω:

E [f ] =
1

|Ω|

∑

ω∈Ω

f(ω).

The expectation can be thought of as follows: if we repeat a random
choice of an elementary event ω from Ω many times, then the average
of f over these random choices will approach E [f ].
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Example 10.3.2 (Number of 1s) continued. For an illustration,
we compute the expectation of the random variable f1, the num-
ber of 1s in an n-term random sequence of 0s and 1s, according to
the definition. The random variable f1 attains a value 0 for a sin-
gle sequence (all 0s), value 1 for n sequences, . . . , value k for

(

n
k

)

sequences from Cn. Hence

E [f1] =
1

2n

∑

s∈{0,1}n

f1(s)

=
1

2n

n
∑

k=0

(

n

k

)

k.

As we will calculate in Example 12.1.1, the final sum equals n2n−1,
and so E [f1] = n

2
. Since we expect that for n coin tosses, heads

should occur about n
2

times, the result agrees with intuition.
The value of E [f1] can be determined in a simpler way, by the

following trick. For each sequence s ∈ Cn we consider the sequence s̄
arising from s by exchanging all 0s for 1s and all 1s for 0s. We have
f1(s) + f1(s̄) = n, and so

E [f1] =
1

2n

∑

s∈{0,1}n

f1(s) =
1

2n · 2

∑

s∈{0,1}n

(f1(s) + f1(s̄))

= 2−n−12nn =
n

2
.

We now describe a method that often allows us to compute the
expectation in a surprisingly simple manner (we saw that the calcu-
lation according to the definition can be quite laborious even in very
simple cases). We need a definition and a simple
theorem.

10.3.7 Definition. Let A ⊆ Ω be an event in a probability space
(Ω, P ). By the indicator of the event A we understand the random
variable IA : Ω → {0, 1} defined in the following way:

IA(ω) =

{

1 for ω ∈ A
0 for ω �∈ A.

(So the indicator is just another name for the characteristic function
of A.)
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10.3.8 Observation. For any event A, we have E [IA] = P (A).

Proof. By the definition of expectation we get

E [IA] =
∑

ω∈Ω

IA(ω)P ({ω}) =
∑

ω∈A

P ({ω}) = P (A).

�

The following result almost doesn’t deserve to be called a theorem
since its proof from the definition is immediate (and we leave it to
the reader). But we will find this statement extremely useful in the
sequel.

10.3.9 Theorem (Linearity of expectation). Let f, g be arbi-
trary random variables on a finite probability space (Ω, P ), and let
α be a real number. Then we have E [αf ] = αE [f ] and E [f + g] =
E [f ] +E [g]. �

Let us emphasize that f and g can be totally arbitrary, and need
not be independent in any sense or anything like that. (On the other
hand, this nice behavior of expectation only applies to adding ran-
dom variables and multiplying them by a constant. For instance, it
is not true in general that E [fg] = E [f ]E [g]!) Let us continue with
a few examples of how 10.3.7–10.3.9 can be utilized.

Example 10.3.2 (Number of 1s) continued again. We calculate
E [f1], the average number of 1s, in perhaps the most elegant way.
Let the event Ai be “the ith coin toss gives heads”, so Ai is the
set of all n-term sequences with a 1 in the ith position. Obviously,
P (Ai) = 1

2
for all i. We note that for each sequence s ∈ {0, 1}n we

have f1(s) = IA1
(s) + IA2

(s) + · · · + IAn
(s) (this is just a rather

complicated way to write down a trivial statement). By linearity of
expectation and then using Observation 10.3.8 we obtain

E [f1] = E [IA1
] +E [IA2

] + · · · +E [IAn
]

= P (A1) + P (A2) + · · · + P (An) =
n

2
.

�

Example 10.3.3 (Number of surviving rabbits) continued.
We will compute E [f2], the expected number of surviving rabbits.
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π(i), π(i − 1),. . . , π(1) are still in

. . . . . .
1 2 i i + 1 n − 1 n

π(i + 1) π(n)π(n − 1)

Fig. 10.2 A procedure for selecting a random permutation.

This time, let Ai be the event “the ith rabbit survives”; formally, Ai

is the set of all mappings α that map no element to i. The proba-
bility that the jth hunter shoots the ith rabbit is 1

n
, and since the

hunters select rabbits independently, we have P (Ai) = (1 − 1/n)n.
The remaining calculation is as in the preceding example:

E [f2] =

n
∑

i=1

E [IAi
] =

n
∑

i=1

P (Ai) =

(

1 −
1

n

)n

n ≈
n

e

(since (1 − 1/n)n converges to e−1 for n → ∞; see Exercise 3.5.2).
About 37% of the rabbits survive on the average. �

Example 10.3.4 (Number of left maxima) continued. Now we
will calculate the expected number of left maxima of a random per-
mutation, E [f3]. Let us define Ai as the event “i is a left max-
imum of π”, meaning that Ai = {π ∈ Sn : π(i) > π(j) for j =
1, 2, . . . , i−1}. We claim that P (Ai) = 1

i
. Perhaps the most intuitive

way of deriving this is to imagine that the random permutation π is
produced by the following method. We start with a bag containing
the numbers 1, 2, . . . , n. We draw a number from the bag at random
and declare it to be π(n). Then we draw another random number
from the bag which becomes π(n− 1) etc., as in Fig. 10.2. The value
of π(i) is selected at the moment the bag contains exactly i numbers.
The probability that we choose the largest one of these i numbers
for π(i) (which is exactly the event Ai) thus equals 1

i
. The rest is

again the same as in previous examples:

E [f3] =

n
∑

i=1

E [IAi
] =

n
∑

i=1

P (Ai) = 1 +
1

2
+

1

3
+ · · · +

1

n
.

The value of the sum of reciprocals on the right-hand side is roughly
ln n; see Section 3.4. �


