Stratifying multiparameter persistent homology

Nina Otter

Mathematical Institute, University of Oxford
The Alan Turing Institute

joint with Hal Schenck, Heather Harrington, and Ulrike Tillmann

Persistent homology pipeline

Data \rightarrow (1) \rightarrow Filtered space \rightarrow (2) \rightarrow Persistence module
Step (1): from data to filtered spaces

finite metric space \rightarrow \text{filtered simplicial complex}
Step (2): from filtered spaces to persistence modules

filtered simplicial complex \(K_{\epsilon_1} \subseteq \cdots \subseteq K_{\epsilon_n} = K \)
for \(\epsilon_1 \leq \cdots \leq \epsilon_n \)

\[
\begin{align*}
K_{\epsilon_1} & \subseteq \cdots \subseteq K_{\epsilon_n} = K \\
\text{for } \epsilon_1 & \leq \cdots \leq \epsilon_n \\
H_p(K_{\epsilon_1}) & \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n-1,n}} H_p(K_{\epsilon_n})
\end{align*}
\]
Step (2): from filtered spaces to persistence modules

filtered simplicial complex \(K_{\epsilon_1} \subseteq \cdots \subseteq K_{\epsilon_n} = K \) for \(\epsilon_1 \leq \cdots \leq \epsilon_n \)

\[
H_p(K_{\epsilon_1}) \xrightarrow{f_{1,2}} \cdots \xrightarrow{f_{n-1,n}} H_p(K_{\epsilon_n})
\]

More precisely, we obtain a tuple \((\{H_p(K_{\epsilon_i})\}_{i=1}^n, \{f_{i,j}\}_{i \leq j}) \) such that \(f_{k,j} \circ f_{i,k} = f_{i,j} \) for all \(i \leq k \leq j \).

This is the \(p \text{th} \) \textbf{persistent homology} of \((K, \{K_{\epsilon_i}\}_{i=1}^n) \).
Persistence modules

In general,

- a sequence \(\{ M_i \}_{i \in \mathbb{N}} \) of \(\mathbb{K} \)-vector spaces
- a collection \(\{ f_{i,j} : M_i \rightarrow M_j \}_{i \leq j} \) of linear maps such that \(f_{k,j} \circ f_{i,k} = f_{i,j} \) for all \(i \leq k \leq j \)

is called a **persistence module**.
Persistence modules

In general,

- a sequence \(\{M_i\}_{i \in \mathbb{N}} \) of \(K \)-vector spaces
- a collection \(\{f_{i,j}: M_i \rightarrow M_j\}_{i \leq j} \) of linear maps such that \(f_{k,j} \circ f_{i,k} = f_{i,j} \) for all \(i \leq k \leq j \)

is called a **persistence module**.

In other words, a persistence module is a functor \(\mathbb{N} \rightarrow \mathbf{KVect} \).
Persistence modules

In general,

- a sequence \(\{ M_i \}_{i \in \mathbb{N}} \) of \(\mathbb{K} \)-vector spaces
- a collection \(\{ f_{i,j}: M_i \rightarrow M_j \}_{i \leq j} \) of linear maps such that
 \(f_{k,j} \circ f_{i,k} = f_{i,j} \) for all \(i \leq k \leq j \)

is called a **persistence module**.

In other words, a persistence module is a functor \(\mathbb{N} \rightarrow \mathbb{K} \text{Vect} \).

What kind of object is this?

Recall: The ring \(\mathbb{K}[x] \) is \(\mathbb{N} \)-graded: \(\mathbb{K}[x] = \bigoplus_{i \in \mathbb{N}} \mathbb{K}x^i \).

An \(\mathbb{N} \)-graded module \(M \) over \(\mathbb{K}[x] \) is a module over \(\mathbb{K}[x] \) such that
\(M = \bigoplus_{i \in \mathbb{N}} M_i \) and \(x^j M_i \subset M_{i+j} \) for all \(i, j \).
Correspondence theorem

\[
\left(\{ M_i \}_{i \in \mathbb{N}}, \{ f_{i,j} : M_i \rightarrow M_j \}_{i \leq j} \right) \mapsto \bigoplus_{i \in \mathbb{N}} M_i \text{ with action of } x^j \text{ on } M_i
\]

given by \(f_{i,i+j} \)
Correspondence theorem

$$\left(\{ M_i \}_{i \in \mathbb{N}}, \{ f_{i,j} : M_i \to M_j \}_{i \leq j} \right) \mapsto \bigoplus_{i \in \mathbb{N}} M_i \text{ with action of } x^j \text{ on } M_i$$

given by $f_{i,i+j}$

$$\left(\{ M_i \}_{i \in \mathbb{N}}, \{ x^{j-i} : M_i \to M_j \}_{i \leq j} \right) \leftarrow M = \bigoplus_{i \in \mathbb{N}} M_i \text{ graded module}$$
Correspondence theorem

\[\left(\{ M_i \}_{i \in \mathbb{N}}, \{ f_{i,j} : M_i \to M_j \}_{i \leq j} \right) \mapsto \bigoplus_{i \in \mathbb{N}} M_i \text{ with action of } x^j \text{ on } M_i \]

given by \(f_{i,i+j} \)

\[\left(\{ M_i \}_{i \in \mathbb{N}}, \{ x^{j-i} : M_i \to M_j \}_{i \leq j} \right) \leftarrow M = \bigoplus_{i \in \mathbb{N}} M_i \text{ graded module} \]

Theorem (Carlsson, Zomorodian, 2005\(^1\))

There is an isomorphism between the category of persistence modules and the category of \(\mathbb{N} \)-graded modules over \(\mathbb{K}[x] \).

\(^1\)G. Carlsson, A. Zomorodian *Computing persistent homology*, Discrete & Computational Geometry, 2005
Structure theorem for f.g. graded modules over a PID

Theorem (Webb 1985\(^2\))

For any finitely generated \(\mathbb{N}\)-graded module \(M\) over \(K[x]\):

\[M \cong \left(\bigoplus_{i=1}^{n} x^{\alpha_i} K[x] \right) \oplus \left(\bigoplus_{j=1}^{m} x^{\beta_j} K[x]/x^{\beta_j+\gamma_j} \right) . \]

This gives:

- \(n\) infinite intervals \([\alpha_i, \infty)\) for \(i = 1, \ldots, r\)
- \(m\) finite intervals \([\beta_j, \beta_j + \gamma_j)\) for \(j = 1, \ldots, m\).

This collection of intervals is called **barcode**, and it is a complete invariant for persistence modules.

Examples of barcode

\(\varepsilon = 0 \)

\(\varepsilon = 0.6 \)

\(\varepsilon = 1.1 \)

\(\varepsilon = 1.6 \)

\(\varepsilon = 2.1 \)
Example of Barcode
Applications of PH

Persistent homology can be applied to, e.g.:

1. Finite metric spaces
2. Undirected weighted networks
3. Grey-scale digital images
PH to study grey-scale images

\[G = \begin{pmatrix}
115 & 119 & 119 & 119 & 119 \\
115 & 94 & 94 & 94 & 114 \\
115 & 94 & 139 & 100 & 114 \\
115 & 94 & 99 & 99 & 114 \\
115 & 117 & 117 & 117 & 117
\end{pmatrix} \]
A roadmap for the computation of persistent homology
N. Otter, M. Porter, U. Tillmann, P. Grindrod, H. Harrington,
EPJ Data Science 2017 6:17 (SpringerOpen)
Libraries for PH and overview of computation

- A roadmap for the computation of persistent homology
 N. Otter, M. Porter, U. Tillmann, P. Grindrod, H. Harrington,
 EPJ Data Science 2017 6:17 (SpringerOpen)

- Come along to the practical session on Monday 4 September
 at 3pm!
Multi-parameter persistent homology

Motivation

1. Data often depend on several parameters, e.g.:
 - colored digital images
Multi-parameter persistent homology

Motivation

1. Data often depend on several parameters, e.g.:
 - colored digital images
 - complex biological data sets (here: blood vessel growth in presence of tumor)
Multi-parameter persistent homology

Motivation

2. Outliers
Multi-parameter persistent homology pipeline

1. Data depending on r parameters
2. r-filtered space
3. r-parameter persistence module
Step (1): from data to multi-filtered spaces

Define the following partial order on \mathbb{N}^r:

$(u_1, \ldots, u_r) \preceq (v_1, \ldots, v_r)$ iff $u_i \leq v_i$ for all $i = 1, \ldots, r$.

A multi-filtered space K is a tuple $(K, \{K_u\}_{u \in \mathbb{N}^r})$ with $K_u \subseteq K_v$ whenever $u \preceq v$ in \mathbb{N}^r and $K = \bigcup_{u \in \mathbb{N}^r} K_u$.

map $f : X \to \mathbb{R}^r$ digital image with color vectors of length r
Step (1): from data to multi-filtered spaces

Define the following partial order on \mathbb{N}^r:
$$(u_1, \ldots, u_r) \preceq (v_1, \ldots, v_r) \text{ iff } u_i \leq v_i \text{ for all } i = 1, \ldots, r.$$

A multi-filtered space K is a tuple $(K, \{K_u\}_{u \in \mathbb{N}^r})$ with $K_u \subseteq K_v$ whenever $u \preceq v$ in \mathbb{N}^r and $K = \bigcup_{u \in \mathbb{N}^r} K_u$.

map $f : X \to \mathbb{R}^r$ \longrightarrow r-filtered simplicial complex

digital image with color vectors of length r \longrightarrow r-filtered cubical complex
Step (2): from multi-filtered spaces to multi-parameter persistence modules

A r-parameter persistence module is a tuple $\left(\{ M_u \}_{u \in \mathbb{N}^r}, \{ \phi_{u,v} \}_{u \preceq v \in \mathbb{N}^r} \right)$ where:

- for each $u \in \mathbb{N}^r$ we have that M_u is a K-vector space
- for every $u \preceq v$ we have that $\phi_{u,v} : M_u \to M_v$ is a K-linear map such that whenever $u \preceq u' \preceq u''$ we have

$$\phi_{u',u''} \circ \phi_{u,u'} = \phi_{u,u''}.$$

In other words, an r-parameter persistence module is a functor $F : \mathbb{N}^r \to K\text{Vect}.$
Correspondence theorem

What kind of objects are multiparameter persistence modules?
Correspondence theorem

What kind of objects are multiparameter persistence modules?

Put an \mathbb{N}^r-grading on the ring $K[x_1, \ldots, x_r]$:

$$K[x_1, \ldots, x_r] = \bigoplus_{u \in \mathbb{N}^r} K x^u,$$

where $x^u = x_1^{u_1} \ldots x_r^{u_r}$, so every variable x_i has degree $e_i \in \mathbb{N}^r$.

Theorem (Carlsson, Zomorodian, 2009)

There is an isomorphism of categories between the category of r-parameter persistence modules and the category of \mathbb{N}^r-graded modules over $K[x_1, \ldots, x_r]$.

Problem: There is no decomposition analogous to the 1-parameter case.
Correspondence theorem

What kind of objects are multiparameter persistence modules?

Put an \mathbb{N}^r-grading on the ring $K[x_1, \ldots, x_r]$:

$$K[x_1, \ldots, x_r] = \bigoplus_{u \in \mathbb{N}^r} Kx^u,$$

where $x^u = x_1^{u_1} \cdots x_r^{u_r}$, so every variable x_i has degree $e_i \in \mathbb{N}^r$.

Theorem (Carlsson, Zomorodian, 2009\(^3\))

There is an isomorphism of categories between the category of r-parameter persistence modules and the category of \mathbb{N}^r-graded modules over $K[x_1, \ldots, x_r]$.

\(^3\)G. Carlsson, A. Zomorodian *The theory of multidimensional persistence*, Discrete & Computational Geometry, 2009
Correspondence theorem

What kind of objects are multiparameter persistence modules?

Put an \(\mathbb{N}^r \)-grading on the ring \(K[x_1, \ldots, x_r] \):

\[
K[x_1, \ldots, x_r] = \bigoplus_{u \in \mathbb{N}^r} Kx^u,
\]

where \(x^u = x_1^{u_1} \cdots x_r^{u_r} \), so every variable \(x_i \) has degree \(e_i \in \mathbb{N}^r \).

Theorem (Carlsson, Zomorodian, 2009\(^3\))

There is an isomorphism of categories between the category of \(r \)-parameter persistence modules and the category of \(\mathbb{N}^r \)-graded modules over \(K[x_1, \ldots, x_r] \).

Problem: There is no decomposition analogous to the 1-parameter case.

\(^3\)G. Carlsson, A. Zomorodian *The theory of multidimensional persistence*, Discrete & Computational Geometry, 2009
Any persistence module is the homology of a filtered space

The homology of a multifiltered space is an \mathbb{N}^r-graded module over $K[x_1, \ldots, x_r]$.

[Theorem (Carlsson, Zomorodian, 2009)]

For any finitely generated \mathbb{N}^r-graded module M there exists a finite multifiltered simplicial complex K and a positive natural number i such that M is the homology in degree i of K.

Therefore, studying the homology of r-filtered spaces amounts to studying graded modules over $K[x_1, \ldots, x_r]$.
Any persistence module is the homology of a filtered space

The homology of a multifiltered space is an \mathbb{N}^r-graded module over $K[x_1, \ldots, x_r]$.

On the other hand:

Theorem (Carlsson, Zomorodian, 2009)

*For any finitely generated \mathbb{N}^r-graded module M there exists a finite multifiltered simplicial complex K and a positive natural number i such that M is the homology in degree i of K.***
Any persistence module is the homology of a filtered space

The homology of a multifiltered space is an \mathbb{N}^r-graded module over $\mathbb{K}[x_1, \ldots, x_r]$.

On the other hand:

Theorem (Carlsson, Zomorodian, 2009)

For any finitely generated \mathbb{N}^r-graded module M there exists a finite multifiltered simplicial complex K and a positive natural number i such that M is the homology in degree i of K.

Therefore, studying the homology of r-filtered spaces amounts to studying graded modules over $\mathbb{K}[x_1, \ldots, x_r]$.
Desiderata for invariants for applications

Such invariants should be:

▶ Computable
▶ Stable
▶ Interpretable

From (Carlsson, Zomorodian 2009):

Our study of multigraded objects shows that no complete discrete invariant exists for multidimensional persistence. We still desire a discriminating invariant that captures persistent information, that is, homology classes with large persistence.
Desiderata for invariants for applications

Such invariants should be:

▶ Computable
▶ Stable
▶ Interpretable
Desiderata for invariants for applications

Such invariants should be:

- Computable
- Stable
- Interpretable

From (Carlsson, Zomorodian 2009):

Our study of multigraded objects shows that no complete discrete invariant exists for multidimensional persistence. We still desire a discriminating invariant that captures persistent information, that is, homology classes with large persistence.
Support shape of a module

Recall: Let M be a module over a commutative ring R. Let U be a non-empty subset of M. Define the **annihilator of U** as follows:

$$\text{Ann}(U) = \{ r \in R \mid \forall u \in U : ru = 0 \}.$$
Support shape of a module

Recall: Let M be a module over a commutative ring R. Let U be a non-empty subset of M. Define the **annihilator of** U as follows:

$$\text{Ann}(U) = \{ r \in R \mid \forall u \in U : ru = 0 \}.$$

A prime ideal $p \subset R$ is **associated to** M if p is the annihilator of an element of M.

A prime ideal $p \subset R$ is **associated to** M if p is the annihilator of an element of M.

Denote by $\text{Ass}(M)$ the poset of all primes associated to M.

Fact: For a finitely generated \mathbb{N}^r-graded $K[x_1, \ldots, x_r]$-module M, any associated prime p of M is of the form $p = (x_{i_1}, \ldots, x_{i_k})$.

Definition For such a prime p define the **complement support** $c_p = \{ (u_1, \ldots, u_r) \in \mathbb{N}^r \mid u_i = 0 \text{ for all } i \in \{i_1, \ldots, i_k\} \}$.

The **support shape** of M is $\text{ss}(M) = \bigcup_{p \in \text{Ass}(M)} c_p$.

Support shape of a module

Recall: Let M be a module over a commutative ring R. Let U be a non-empty subset of M. Define the **annihilator of U** as follows:

$$\text{Ann}(U) = \{ r \in R \mid \forall u \in U : ru = 0 \}.$$

A prime ideal $p \subset R$ is **associated to** M if p is the annihilator of an element of M.

Denote by $\text{Ass}(M)$ the poset of all primes associated to M.
Support shape of a module

Recall: Let M be a module over a commutative ring R. Let U be a non-empty subset of M. Define the **annihilator of U** as follows:

$$\text{Ann}(U) = \{ r \in R \mid \forall u \in U : ru = 0 \}.$$

A prime ideal $p \subset R$ is **associated to M** if p is the annihilator of an element of M.

Denote by $\text{Ass}(M)$ the poset of all primes associated to M.

Fact: For a finitely generated \mathbb{N}^r-graded $K[x_1, \ldots, x_r]$-module M, any associated prime p of M is of the form $p = (x_{i_1}, \ldots, x_{i_k})$.

Support shape of a module

Recall: Let M be a module over a commutative ring R. Let U be a non-empty subset of M. Define the **annihilator of U** as follows:

$$\text{Ann}(U) = \{ r \in R \mid \forall u \in U : ru = 0 \}.$$

A prime ideal $p \subset R$ is **associated to M** if p is the annihilator of an element of M.

Denote by $\text{Ass}(M)$ the poset of all primes associated to M.

Fact: For a finitely generated \mathbb{N}^r-graded $\mathbb{K}[x_1, \ldots, x_r]$-module M, any associated prime p of M is of the form $p = (x_{i_1}, \ldots, x_{i_k})$.

Definition

For such a prime p define the **complement support**

$$c_p = \{(u_1, \ldots, u_r) \in \mathbb{N}^r \mid u_i = 0 \text{ for all } i \in \{i_1, \ldots, i_k\}\}.$$
Support shape of a module

Recall: Let M be a module over a commutative ring R. Let U be a non-empty subset of M. Define the **annihilator of U** as follows:

$$\text{Ann}(U) = \{ r \in R \mid \forall u \in U : ru = 0 \}.$$

A prime ideal $p \subset R$ is **associated to** M if p is the annihilator of an element of M.

Denote by $\text{Ass}(M)$ the poset of all primes associated to M.

Fact: For a finitely generated \mathbb{N}^r-graded $\mathbb{K}[x_1, \ldots, x_r]$-module M, any associated prime p of M is of the form $p = (x_{i_1}, \ldots, x_{i_k})$.

Definition

For such a prime p define the **complement support**

$$c_p = \{(u_1, \ldots, u_r) \in \mathbb{N}^r \mid u_i = 0 \text{ for all } i \in \{i_1, \ldots, i_k\}\}.$$

The **support shape** of M is $\text{ss}(M) = \bigcup_{p \in \text{Ass}(M)} c_p$.
Stratification of the support shape

Given a sequence $p_0 \subset \cdots \subset p_m$ of associated primes of M, one obtains a nested sequence

$$c_{p_m} \subset \cdots c_{p_0} \subset ss(M).$$
Stratification of the support shape

Given a sequence $p_0 \subset \cdots \subset p_m$ of associated primes of M, one obtains a nested sequence

$$c_{p_m} \subset \cdots \subset c_{p_0} \subset ss(M).$$

Definition
We call the poset $Ass(M)$ the **stratification** of $ss(M)$.
Stratification of the support shape

Given a sequence \(p_0 \subset \cdots \subset p_m \) of associated primes of \(M \), one obtains a nested sequence

\[
c_{p_m} \subset \cdots c_{p_0} \subset \text{ss}(M).
\]

Definition

We call the poset \(\text{Ass}(M) \) the **stratification** of \(\text{ss}(M) \).

Note: \(\text{ss}(M) \) is completely determined by the minimal associated primes.
Example

\[M = S(-1, -1) \oplus S(-2, -2) \]
Example

\[M = S(-1, -1) \oplus S(-2, -2) \]

\[N = S(-2, -2) \oplus S(-2, -2) \oplus \frac{S(-2, -1)}{x_2} \oplus \frac{S(-1, -2)}{x_1} \oplus \frac{S(-1, -1)}{\langle x_1, x_2 \rangle} \]
Example

\[M = S(-1, -1) \oplus S(-2, -2) \]

\[N = S(-2, -2) \oplus S(-2, -2) \oplus \frac{S(-2, -1)}{x_2} \oplus \frac{S(-1, -2)}{x_1} \oplus \frac{S(-1, -1)}{\langle x_1, x_2 \rangle} \]

Ass\((M) = \{(0)\}, \) and Ass\((N) = \{(0), (x_1), (x_2), (x_1, x_2)\}. \)
Example

\[M = S(-1, -1) \oplus S(-2, -2) \]

\[N = S(-2, -2) \oplus S(-2, -2) \oplus S(-2, -1) \oplus S(-1, -2) \oplus S(-1, -1) \]

\[\frac{S(-2, -1)}{x_2} \oplus \frac{S(-1, -2)}{x_1} \oplus \langle x_1, x_2 \rangle \]

\[\text{Ass}(M) = \{(0)\}, \text{ and } \text{Ass}(N) = \{(0), (x_1), (x_2), (x_1, x_2)\}. \]

The points of \(\mathbb{N}^r \) at which the module \(M \), as well as \(N \), does not vanish:
Example

\[M = S(-1, -1) \oplus S(-2, -2) \]

\[N = S(-2, -2) \oplus S(-2, -2) \oplus \frac{S(-2, -1)}{x_2} \oplus \frac{S(-1, -2)}{x_1} \oplus \frac{S(-1, -1)}{\langle x_1, x_2 \rangle} \]

\[\text{Ass}(M) = \{ (0) \}, \text{ and } \text{Ass}(N) = \{ (0), (x_1), (x_2), (x_1, x_2) \}. \]

The points of \(\mathbb{N}^r \) at which the module \(M \), as well as \(N \), does not vanish:

The support shape of \(M \), as well as \(N \):

![Diagram of the support shape of M and N]

```plaintext
\cdot \cdot \cdot \\
```

Example

\[M = S(-1, -1) \oplus S(-2, -2) \]

\[N = S(-2, -2) \oplus S(-2, -2) \oplus \frac{S(-2, -1)}{x_2} \oplus \frac{S(-1, -2)}{x_1} \oplus \frac{S(-1, -1)}{\langle x_1, x_2 \rangle} \]

\[\text{Ass}(M) = \{ (0) \}, \text{ and } \text{Ass}(N) = \{ (0), (x_1), (x_2), (x_1, x_2) \}. \]

The points of \(\mathbb{N}^r \) at which the module \(M \), as well as \(N \), does not vanish:
Example (cont.)

The chains in the stratification of \(ss(N) \):
The chains in the stratification of $ss(N)$:

$$c(x_1, x_2) \subset c(x_1) \subset c(0)$$
Example (cont.)

The chains in the stratification of $ss(N)$:

$c(x_1, x_2) \subset c(x_1) \subset c(0)$

$c(x_1, x_2) \subset c(x_2) \subset c(0)$
Generalisation of definition of birth and death

We say that a homogeneous element \(a \) of \(M \) is:

- **born at** \((u_1, \ldots, u_r) \in \mathbb{N}^r\) if the degree of \(a \) is \((u_1, \ldots, u_r)\) and \(a \) is not in the image of any sum of maps \(\sum_v x^v \) for any \(v < u \).

- If \(\text{Ann}(a) \neq (0) \) let \(D \subset \mathbb{N}^r \) be the subset of \(\mathbb{N}^r \) obtained from the set of degrees of the set of minimal generators of \(\text{Ann}(a) \) by adding to each degree the degree of \(a \). Then we say that \(a \) **dies in degrees** \(D \).

- If \(\text{Ann}(a) = (0) \) we say that \(a \) **lives forever**.

- If \(\sqrt{\text{Ann}(a)} = \langle x_{i_1}, \ldots, x_{i_k} \rangle = p \), we say that \(a \) **lives along** \(c_p \subset \mathbb{N}^r \). In this case we say that \(a \) has **support dimension** \(r - k \).

We call elements of support dimension 0 **transient components**, elements of support dimension \(1 \leq d < r \) **persistent components**, and elements of support dimension \(r \) **fully persistent components**.
Generalisation of definition of birth and death

We say that a homogeneous element a of M is:

- **born at** $(u_1, \ldots, u_r) \in \mathbb{N}^r$ if the degree of a is (u_1, \ldots, u_r) and a is not in the image of any sum of maps $\sum_v x^v$ for any $v \prec u$.

- If $\text{Ann}(a) \neq (0)$ let $D \subset \mathbb{N}^r$ be the subset of \mathbb{N}^r obtained from the set of degrees of the set of minimal generators of $\text{Ann}(a)$ by adding to each degree the degree of a. Then we say that a **dies in degrees** D.

- If $\text{Ann}(a) = (0)$ we say that a **lives forever**.

- If $\sqrt{\text{Ann}(a)} = \langle x_{i_1}, \ldots, x_{i_k} \rangle = \mathfrak{p}$, we say that a **lives along** $c_p \subset \mathbb{N}^r$. In this case we say that a has **support dimension** $r - k$.

We call elements of support dimension 0 **transient components**, elements of support dimension $1 \leq d < r$ **persistent components**, and elements of support dimension r **fully persistent components**.
Information forgotten by c_p and $ss(M)$

Module points at which the module does not vanish

\[M_1 = \frac{S(-1, -2)}{x_1} \]

\[M_2 = \frac{S}{x_1^2} \]

\[M_3 = \frac{S}{x_1} \oplus \frac{S}{x_1} \]

“translation”

“thickness”

“multiplicity”
The rank of a finitely generated module M over an integral domain R with field of fractions F is

$$\text{rk}_S M = \dim_F M \otimes_R F$$
The rank of a finitely generated module M over an integral domain R with field of fractions F is

$$\text{rk}_S M = \dim_F M \otimes_R F$$

The rank of a module is the minimum number of generators for the submodule generated by the fully persistent components.
The rank of a finitely generated module M over an integral domain R with field of fractions F is

$$\text{rk}_S M = \dim_F M \otimes_R F$$

The rank of a module is the minimum number of generators for the submodule generated by the fully persistent components.

The 0th local cohomology of M along a prime p is the set

$$H^0_p(M) = \{ a \in M \mid p^n a = 0 \text{ for all } n \gg 0 \}.$$
The rank of a finitely generated module M over an integral domain R with field of fractions F is

$$\text{rk}_S M = \dim_F M \otimes_R F$$

The rank of a module is the minimum number of generators for the submodule generated by the fully persistent components.

The 0th local cohomology of M along a prime p is the set

$$H_p^0(M) = \{a \in M \mid p^n a = 0 \text{ for all } n \gg 0\}.$$

If $p = \langle x_1, \ldots, x_k \rangle$ is an associated prime of M, then

$$H_p^0(M) = \{a \in M \mid a \text{ lives along } c_p\},$$

and
Rank and local cohomology

- The rank of a finitely generated module M over an integral domain R with field of fractions F is
 \[
 \text{rk}_S M = \dim_F M \otimes_R F
 \]

- The rank of a module is the minimum number of generators for the submodule generated by the fully persistent components.

- The 0th local cohomology of M along a prime p is the set
 \[
 H^0_p(M) = \{ a \in M \mid p^n a = 0 \text{ for all } n \gg 0 \}.
 \]
 If $p = \langle x_1, \ldots, x_k \rangle$ is an associated prime of M, then
 - $H^0_p(M) = \{ a \in M \mid a \text{ lives along } c_p \}$, and
 - $H^0_p(M)$ is finitely generated as an $\mathbb{K}[x_{k+1}, \ldots, x_r]$-module.
Example

module points at which the module does not vanish

\[M_1 = \frac{S(-1,-2)}{x_1} \]

\[M_2 = \frac{S}{x_1^2} \]

\[M_3 = \frac{S}{x_1} \oplus \frac{S}{x_1} \]

\[\text{rk}_{K[x_2]} H^0_{x_1}(M_1) = 1 \]

\[\text{rk}_{K[x_2]} H^0_{x_1}(M_2) = 2 \]

\[\text{rk}_{K[x_2]} H^0_{x_1}(M_3) = 2 \]
Conclusions

- The stratification of the support shape gives a summary of the existence of elements that live along certain coordinate directions.
Conclusions

- The stratification of the support shape gives a summary of the existence of elements that live along certain coordinate directions.

- The stability of the stratification probably depends on the codimension of the associated primes.
Conclusions

▶ The stratification of the support shape gives a summary of the existence of elements that live along certain coordinate directions.

▶ The stability of the stratification probably depends on the codimension of the associated primes.

▶ Associated primes do not give information about non-trivial second syzygies (nor higher ones).