Speaker: Jason Lucier, Waterloo
Title: INTERSECTIVE SETS

Abstract: Let \(h(x) \in \mathbb{Z}[x] \) be a nonconstant polynomial which has a root modulo \(m \) for every positive integer \(m \). Kamae and Mendes France have shown that given any set \(A \) of positive integers with positive upper density there exists two distinct elements \(a, a' \in A \) such that

\[
a - a' = h(x)
\]

for some integer \(x \geq 1 \). Over the years several quantitative versions of this result have been given for specific polynomials. We give a quantitative result which applies to all such polynomials and from which we can deduce the following result. Given \(A \) and \(h(x) \) as above we define \(R(A_N) \) to be the number of solutions of

\[
a - a' = h(x)
\]

with \(a, a' \in A \cap \{1, \ldots, N\} \) and \(x \geq 1 \). If the degree of \(h(x) \) is \(k \geq 2 \), then

\[
\limsup_{N \to \infty} \frac{R(A_N)}{N^{1+1/k}} > 0.
\]

This generalizes a result due to R.C. Vaughan.