NUMBER THEORY SEMINAR Tuesday, April 27, 4.30 - 5.30 pm, MS 6221

Speaker: Brian Conrad, U. Michigan

TITLE: Root numbers and ranks over global function fields.

ABSTRACT: A useful (unproved) consequence of the Birch and Swinnerton-Dyer conjecture is that the global root number for an elliptic curve over a global field determines the parity of the rank of the Mordell-Weil group. Standard conjectures in analytic number theory imply that if $E \to \mathbb{P}^1_{\mathbb{Q}}$ is a non-isotrivial minimal elliptic surface admitting points of multiplicative reduction on $\mathbb{P}^1_{\mathbb{Q}}$ then the average of the root numbers of the \mathbb{Q} -rational fibers is 0; in particular (if one accepts these standard conjectures), infinitely many fibers have root number 1 and infinitely many fibers have root number -1. There have been counterexamples constructed when the nonisotriviality or multiplicative-reduction conditions are dropped.

One of these "standard conjectures", called Chowla's conjecture, is not true for global function fields, and this suggests that there may exist nonisotrivial elliptic surfaces over \mathbb{P}_F^1 for a global function field F such that there is a closed point on \mathbb{P}_F^1 where the family has multiplicative reduction but the average of the root numbers of the non-degenerate F-rational fibers is not 0. We do better: in the case F = k(u) for varying finite fields k of char p > 3, we construct a 4-parameter algebraic family of such elliptic surfaces whose generic fiber (in the Grothendieck sense) has Mordell-Weil group with odd rank 1 but whose F-rational fibers all have global root number +1 (and thus have even positive rank, under the parity conjecture). The determination of the rank of the generic fiber rests on a mixture of cohomological and geometric methods, as well as a computation of a Cassels-Tate pairing.

This talk summarizes joint work with K. Conrad and H. Helfgott.