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1. INTRODUCTION

There is considerable interest in continuous homomorphisms
p:Gg— GLy (@2)

where Gg = Gal (@/ Q) is the absolute Galois group of Q and ¢ is a fixed rational
prime. For example, p = pg ¢ may be the {-adic representation of an elliptic curve
E over Q, or p = py may be the f-adic representation associated to a modular form.
The continuity of such Galois representations implies the image lies in GLy(O) for
some ring of integers O with maximal ideal A in a finite extension K of Qg; then
k = O/\ is a finite extension of Fy. We define the residual representation p as the
composition

For example, p = pg, may be the mod ¢ representation of an elliptic curve, or
p = py may be the mod ¢ reduction of the representation associated to a modular
form. We also consider the projective representation p as the composition

7:Gg— GLy (Q)) — PGL, (Qy)

A common question is: Given a continuous f-adic Galois representation p such
that p is modular i.e. p ~ p;, when is p modular i.e. p ~ ps?
Our main result is:

Theorem 1. For ¢ an odd prime, let p : Gg — GL2(O) be a continuous ¢-adic
representation such that
(1) p is ordinary and ramified at finitely many primes;
(2) p is absolutely irreducible when restricted to Gal (@/Q( (—1)e=1)/2 é)),
modular, and wildly ramified at €.
Then p is {-adically modular i.e. p >~ ps for an l-adic cusp form f.
One application is:
Theorem 2. For ¢ an odd prime, let p : Gg — GL2 (O) be a continuous Galois
representation such that
(1) p is ramified at finitely many primes;
(2) p is absolutely irreducible when restricted to Gal (@/Q( (—1)e=1)/2 é)),
modular, and wildly ramified at ¢;
(3) p(Gy) is finite and p(Gy) is a cyclic group of L-power order.

Then 1o p: Gg — GLg (C) is modular for each embedding v : K — C.
1
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For any continuous complex Galois representation p, there is a finite extension
L/Q which makes the following diagram commute:

1 —— Gal (@/L) — Gal (@/@) — Gal(L/Q) —— 1

| K lr
1] —— Cc* —— GLy(C) —— PGLy(C) —— 1
The projective image p(Gg) can either be cyclic, dihedral, tetrahedral (A4 o~

PSLy(F3)), octahedral (S4 ~ PGLs(F3)), or icosahedral (A5 ~ PSLy(F5)). Our
third result is:

Theorem 3. Let p : Gg — GL3(C) be a continuous representation with non-
solvable image. If L is the splitting field of a quintic 2° + Bx + C such that
75 C2%/\/256 B5 + 3125 C* is the square of a 5-adic unit, then p is (classically) mod-
ular.

Here is one example: the polynomials
2® +102® +102° + 352+ 18  and  52° +202+16
generate the same splitting field. An infinite family of examples are
9—5ut 9 —5ut
5

This result gives the first known proof of infinitely many examples of icosahedral
Galois representations satisfying Artin’s Conjecture which are ramified at 5.

2. APPLICATIONS OF THEOREM 1

We explain how the second main result follows from the first. We know from
Theorem 1 that, under suitable hypotheses, p is f-adically modular, but this cusp
form may not be classical.

Proof of Theorem 2. If p(Gy) is finite and p(Gy) is cyclic of ¢-power order, there
exist characters y; and Yo such that the characters x; = x1 'x2 and o =
det p/(x1 x2) are wildly ramified at ¢ and unramified at ¢, respectively. Consider
the twists p; = Xi_l ® p for i =1, 2; then

X -1 *
pilr, =~ (Xz 1) and  polr, ~ (Xﬁ 1) -

Each p; is ordinary and residually modular, so using Theorem 1let f(7) = >, an,¢"
denote the f-adic form associated with p; and g(7) = >, b, ¢" denote the (-adic
form associated with pa. We have

(1) f and g are ordinary cusp forms of weight 1;

(2) f and g have nebentype det p; = xo - x¢ and det pa = x0 - x¢ ™ ;

(3) p1 = xs® p2 ie. ap = xs (Froby) - b, for almost all p # ¢; and

(4) Ay = b( = Xo (Frobg).

We use Kevin Buzzard’s results to “glue” them together. (]

Now we explain how the new case of Artin’s conjecture follows from the second
main result.
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Proposition 4. Let q(x) = 2° + Bz + C be a quintic over Q with Galois group
As, and denote L as its splitting field. Fort € Q*, define the quintic and the curve

5 2 3 2
x)=xz"+5 r+4 | — | ; E; : =z 422"+ ——.
Qt( ) ( 5t2 > ( 5¢2 >7 vy 2\/525

We have the following.

(1) E; is a 2-isogenous Q-curve. If Ly denotes the splitting field of q:(x), then
Li(V/5) € Q(E[5]). Specifically, Li(\/5) is the field generated by sum xp +
Top of x-coordinates of the 5-torsion of E.

(2) Gal(L:/Q) C As. Ift is square of a rational number then Gal(L:/Q) = As.
If t is the square of a 5-adic unit, then the decomposition, inertia, and wild
inertia groups at 5 are cyclic of order 5.

(3) Whent =175C?/+/Disc(q) then L = L.
(4) There exists w : Gal (Q/Q(V5)) — C* such that pg) =w®(ropgs) and
pg) =w ® pg,5 are restictions of representations of Gg.

(5) Ey is modular. In particular, pg) is modular while pg)

lar.

is residually modu-

Any As-extension which is unramified outside of {2, 5, oo} comes from such
quintics. Any quintic in Bring-Jerrard form yields a modular residual representa-
tion.

Proof of Theorem 3: Set t = 75C?//256 B> + 3125C% and E = E;. Then p is a

twist of pg) because there are only two projective complex representations of As
and they are Galois conjugates of each other. The result follows from Theorem
2. O

3. PrROOF OF THEOREM 1

3.1. Universal Deformation Ring. The residual representation p induces an
action of the absolute Galois group on the k-vector space of 2 x 2 matrices with
trace zero given by o-m = p(c) m p(c)~!; we denote this k-vector space with such
an action by ad’p.

Proposition 5. Let p : Gg — GLa(k) be a continuous Galois representation,
and let € be an infinitesimal i.e. €2 = 0. The equivalence classes of infinitesimal
deformations p, : Gg — GLq (kle]) satisfying p. = p mod ekle] and detp, = detp
are in one-to-one correspondence with the cohomology classes in H" (GQ, adoﬁ).

Proof. Express an infinitesimal deformation in the form p,(0) = (13 + €&,) p(o) for
some &, € Maty(k), where £, must have trace zero since detp(o) = detp (o) =
(1+ etré,)det p(o). Equivalence classes of homomorphisms are in one-to-one cor-
respondence with ¢ € H* (GQ7 adoﬁ). O

Recall that for each place v of Q, we have restriction mapsres, : H! (Gg, ad’p) —
H' (G,, adoﬁ). When v # ¢ each deformation p, should be (un)ramified when p

is (un)ramified so the restriction of a class from H! (Gl,, adoﬁ) to H! (Iy, adoﬁ)
should be trivial. Define

H} (G,,, adoﬁ) = ker [Hl (G,,7 adoﬁ) — H! (I,,, adoﬁ)] for v # £.
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When v = ¢ and p is ordinary i.e. the restriction of p to G, is upper-triangular,
each deformation p, should be ordinary as well. We choose

Hj (Gy, ad’p) C ker [H' (G4, ad’p) — H' (G¢, ad’p/ad'p)]
=im [H' (G, ad'p) — H' (G4, ad"p)] .
When restricted to the inertia group, the diagonal terms of p. should be the same

as those of p so the restriction of a class from H* (Gg, adlﬁ) to H' (I[, adlﬁ/adQE)
should be trivial. Define
Hj (Gy, ad’p)
1
1) = im | ker [Hl (G(, adlﬁ) — H! (Ig, adlﬁ/adzﬁ)] — H! (Gg, adoﬁ) .

Remark. We explain how this definition for ¥ = £ compares to the usual one. In
general we have the exact sequence

H} (G, ad’p) —— H' (Ge, ad’p) —— H' (I, ad’p/ad’p)

but the map H! (Gg, adlﬁ) — H! (Gg, adoﬁ) is not an injection. However when
det p = g4 is the cyclotomic character, the group H° (Gg, adoﬁ/adlﬁ) is trivial, so
we recover the usual definition:

Hj (Gy, ad’p) = ker [H' (Gy, ad’p) — H' (I;, ad’p/ad’p)] .

Fix a finite set % of places that does not contain ¢. We define the Selmer group
HL (Q, adoﬁ) as the the collection of classes ¢ € H! (GQ7 adoﬁ) such that res, (§) €
H} (G, adoﬁ) for all places v ¢ ¥. We say a representation p' : Gg — GL2(0') is
a deformation of p of type X if

(1) P 2 p®y k' and det p’ = det p;
(2) p'l1, =~ pl1, @Kk K’ for all v & 3; and

*
3) plo, = <’“ XO) where x; = det p - xo~! and oz, = 1.
Proposition 6. (1) There exists a universal deformation p&™ : Gg — GLa(Rx)

of p of type X.

(2) Rs can be topologically generated as an O-algebra by dimy Hy, ((@7 adoﬁ)
elements.

(3) We have the identity

dimy, H} (G, ad’p) = 1+ dimy H° (G, ad’p) .

3.2. Modular Deformation Ring. Fix a positive integer k, a positive integer
N = Ny/ in terms of an integer Ny prime to ¢, and a Dirichlet character x :
(Z/NZ)* — C*.

Denote A = O[[X]] as the power series ring in the variable X. For each positive
rational integer x, we have a specialization map ¢, : A — O defined by 1 + X —
(14 ¢)". Consider a collection of forms ) ' q" € S.(N,xw; ") for each k. We
call such a collection a Hida family if for each n there exist power series a,(X) € A
such that !/ = a,, ((1 4 €)% — 1) for all but finitely many x. The collection S(N, x)
of formal series FI(X; 7) = 3 an(X)¢" are called A-adic cusp forms of level N
and nebentype y if F ((1+€)" — 1; 7) € S,; (N, xw,; ") for all but finitely many .
For all k, the specializations ¢, o F' are called f-adic modular forms — even when
they are not classical.
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Define the Hecke operators

(F|T,) ( Zan )¢"'? + x(p) Zan " for pt N and
pln

(F|Up) Za qr forp | N,
pln

in terms of the character oy : Z,, — A* mapping d — ((1+ X)/(1+ E))S(d) where

s(d) = log(d)/log(1 + ¢) € Zy; and define the A-adic Hecke algebra h(N,x) as the
A-algebra generated by these operators. One checks that the composition ¢, o gy
sends p — (p)*~1 = (g7/w)® ! for p{ N, and for any operator T and A-adic cusp
form F' we have (¢, o F)|T = ¢, o (F|T).

Denote h°(N,x) = e - h(N,x) as the ordinary part of the Hecke algebra, and
define the ordinary A-adic cusp forms S° (N, x) as those cusp forms.

Associated to each ordinary normalized A-adic eigenform F(X;7) =Y an(X)¢"
of level N and nebentype x there is a continuous A-adic Galois representation
pr : Gg — GLy (Q[[X]]) with the properties
) pr is unramified outside of the primes that divide N;

) trpp (Frob,) = a,(X) for pt N;
) det pp = x - 0y; and
) pr is ordinary.

(1
(2
(3
(4

As I specializes to f-adic cusp forms f = ¢, o F' the Galois representation pp
specializes to f-adic representations py = ¢, o pp.
Define a map 7 : h°(Nx, x) — [ 5 type 5 A by

7. Ty (.., 7p(Tp),...)= (..., trpp (Frob,),...) for p{Ny;

where each component corresponds to a cusp form for p of type . We define the
modular deformation ring Ty to be the A-algebra generated by the images of 7},
for pt Nx. Note there is a continuous representation

P Gg — GLy (Tx)

mod

where p°® >~ [[ 1 (  » pF 18 a deformation of p of type .

3.3. Isomorphism Criteria. The modular deformation ring Ty is a complete,
Noetherian, local A-algebra so there is a unique A-algebra surjection ¢y : Ry — Ty
of the universal deformation ring such that p°d ~ ¢5, 0 p&v. The following result
states that this map is an isomorphism if and only if it is an isomorphism upon
specializing the weight.

Proposition 7. TFAE:
(1) ¢s : Ry — Tx is an isomorphism.
(2) (b(;) : R({") — ']T(;) is an isomorphism for all positive integers k.
(3) (;) : R(;) — T(;) is an isomorphism for some positive integer k.

If any of the above hold for every finite set 3 not containing £, then p is {-adically
modular i.e. p >~ py for some €-adic cusp form f.



6 EDRAY HERBER GOINS

Proof of Theorem 1. It suffices to show ¢(22) : R(EQ) — ']I‘g) (i.e. the weight Kk = 2
case). The following commutative diagram is exact for the unique surjection ¢:

0 —— ker RY 2, 0 0
| e ]
0 —— kermy Tg) Y0 0

Denote the “tangent space” of R(z) as Oy, = (ker ¢) / (ker ¢)?, as well as the ideals

pr = kermy and Iy = AnnT@)ker Ty in T(ZQ). We assume for the moment that there
b

exists a family of ’]I‘(Z2 )_modules Jy, satisfying the following properties:

HM1: Js is free over O with rankpJs = 2 - ranko']l‘(;).
HM2: rankepJs[ps] = 2.

Step 1: The Mzmmal Case. R( ), ( ) is an isomorphism of complete intersec-

tions if and only if R@ — Té ) is an 1som0rphism of complete intersections. There

exists an inteter r and a collection @ of r primes such that Rg ) may be generated

by r elements as an O-algebra. The following diagram commutes:

O[[S1,..., S]] —— O[Aq]

! l

oXn,.... X, —— FD 4 5@

where the horizontal maps are surjections, and the vertical maps are chosen so that
the image of a in Réf) is trivial. Now impose the extra condition
HM4: Jg is free over O[Ag] and Jg/aJg ~ Jy.

Then R( ) o T( ) and Jp is free over Réf).
Step 2: Reduction to the Minimal Case. Denote ad®p;,, = ad’p; @0 A" 0O/
so that change in size from ®y to @y, satisfies

®
7o <= lim H # H° (G, adopfyn(l)) = H Cp-
Hdy  ne 11

Impose the extra condition
HM3: #QZ/# Qp > HpeE D where Qy = JZ/ (Jz[pz] + JZ[IED

Then R(ZQ) ~ T(;) as desired.
Step 3: Construction of Hecke Modules. We construct the modules using mod-
ular curves. (I



