Last time, we spoke about

- Graphing using calculus
Last time, we spoke about

- Graphing using calculus
- Slanted asymptotes
Last time

Last time, we spoke about

- Graphing using calculus
- Slanted asymptotes
- Examples
A function is three pieces of information
A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
A function is three pieces of information

- A domain, \(\mathbb{D} \subset \mathbb{R} \)
- A range, \(\mathbb{R} \subset \mathbb{R} \), and
- A rule \(f : \mathbb{D} \rightarrow \mathbb{R} \) that assigns to every element of \(D \) an element of \(R \).
A function is three pieces of information

- A domain, \(D \subset \mathbb{R} \)
- A range, \(R \subset \mathbb{R} \), and
- A rule \(f : D \rightarrow R \) that assigns to every element of \(D \) an element of \(R \).
A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f : D \rightarrow R$ that assigns to every element of D an element of R.

Example
The functions

are all different functions!
Functions

A function is three pieces of information

- A domain, \(D \subseteq \mathbb{R} \)
- A range, \(R \subseteq \mathbb{R} \), and
- A rule \(f : D \rightarrow R \) that assigns to every element of \(D \) an element of \(R \).

Example

The functions

- \(f : \mathbb{R} \rightarrow \mathbb{R}; x \mapsto x^2 \)

are all different functions!
A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f : D \rightarrow R$ that assigns to every element of D an element of R.

Example

The functions

- $f : \mathbb{R} \rightarrow \mathbb{R}; x \mapsto x^2$
- $f : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}; x \mapsto x^2$

are all different functions!
A function is three pieces of information

- A domain, \(D \subset \mathbb{R} \)
- A range, \(R \subset \mathbb{R} \), and
- A rule \(f : D \rightarrow R \) that assigns to every element of \(D \) an element of \(R \).

Example

The functions

- \(f : \mathbb{R} \rightarrow \mathbb{R}; x \mapsto x^2 \)
- \(f : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}; x \mapsto x^2 \)
- \(f : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}; x \mapsto x^2 \)

are all different functions!
Global Maximums and minimums

Definition (Global maximum)
A function $f : D \rightarrow R$ has a global maximum at a if

$$f(x) \leq f(a) \quad \text{for all } x \in D$$
Global Maximums and minimums

Definition (Global maximum)
A function \(f : D \rightarrow R \) has a global maximum at \(a \) if

\[
f(x) \leq f(a) \quad \text{for all } x \in D
\]

Definition (Global minimum)
A function \(f : D \rightarrow R \) has a global minimum at \(a \) if

\[
f(x) \geq f(a) \quad \text{for all } x \in D
\]
Example of a global minimum

\[f : \mathbb{R} \rightarrow \mathbb{R}; \ x \mapsto x^2 \] has a min at \(x = 0 \)
Example of a global maximum

\[f : (-\infty, 0] \rightarrow \mathbb{R}; f(x) = x^3 \text{ has a max at } x = 0 \]
Local Maximums and minimums

Definition (local maximum)
A function $f : D \rightarrow R$ has a local maximum at a if

$$f(x) \leq f(a) \quad \text{for all } x \text{ near } a$$

Definition (local minimum)
A function $f : D \rightarrow R$ has a local minimum at a if

$$f(x) \geq f(a) \quad \text{for all } x \text{ near } a$$
Local Maximums and minimums

Definition (local maximum)
A function \(f : D \rightarrow R \) has a local maximum at \(a \) if

\[f(x) \leq f(a) \quad \text{for all } x \text{ near } a \]

Definition (local minimum)
A function \(f : D \rightarrow R \) has a local minimum at \(a \) if

\[f(x) \geq f(a) \quad \text{for all } x \text{ near } a \]
Example of a local minimum

\[f : \mathbb{R} \longrightarrow \mathbb{R}; \, x \mapsto x^2 \] has a min at \(x = 0 \)
Example of a local maximum

\[f : \mathbb{R} \rightarrow \mathbb{R}; \quad f(x) = x^3 - 4x^2 - 3x + 13 \text{ has a local max at } x = -\frac{1}{3} \]
Example of a local maximum

\[f : \mathbb{R} \rightarrow \mathbb{R}; f(x) = x^3 - 4x^2 - 3x + 13 \text{ has a local max at } x = -\frac{1}{3} \]
Definition (Critical point)

A function $f(x)$ has a critical point at $x = a$ if $f'(a) = 0$ or if $f'(a)$ is undefined.
Definition (Critical point)
A function $f(x)$ has a critical point at $x = a$ if $f'(a) = 0$ or if $f'(a)$ is undefined.

Examples
Definition (Critical point)
A function $f(x)$ has a critical point at $x = a$ if $f'(a) = 0$ or if $f'(a)$ is undefined.

Examples
- $f(x) = x^2$ has a critical point at $x = 0$ (since $f'(x) = 2x$)
Definition (Critical point)
A function \(f(x) \) has a critical point at \(x = a \) if \(f'(a) = 0 \) or if \(f'(a) \) is undefined.

Examples
- \(f(x) = x^2 \) has a critical point at \(x = 0 \) (since \(f'(x) = 2x \))
- \(f(x) = \sin x \) has a critical point at \(x = \frac{\pi}{2} \) (since \(f'(x) = \cos x \))
Definition (Critical point)
A function $f(x)$ has a critical point at $x = a$ if $f'(a) = 0$ or if $f'(a)$ is undefined.

Examples

- $f(x) = x^2$ has a critical point at $x = 0$ (since $f'(x) = 2x$)
- $f(x) = \sin x$ has a critical point at $x = \frac{\pi}{2}$ (since $f'(x) = \cos x$)
- $f(x) = e^x$ doesn’t have any critical points since $f'(x) = e^x$ can never be zero
How to find minimums and maximums

Local maximums and minimums (extrema) occur at
Local maximums and minimums (extrema) occur at
- critical points
How to find minimums and maximums

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)
Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)
How to find minimums and maximums

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Note: All extrema are critical points, but not all critical points are extrema!
Local maximums and minimums (extrema) occur at
- critical points
- end points of the domain (are also critical points!)

Note: All extrema are critical points, but not all critical points are extrema!

Example
\[f : (-\infty, 1] \rightarrow \mathbb{R}; \quad f(x) = x^3 \] has critical points at
\[x = 0 \text{ and } 1 \]
Example

\[f'(x) = 3x^2 \] so \[f'(0) = 0 \] and \[f'(1) \] is undefined.
First derivative test

Suppose \(x = a \) is a critical point for the function \(f(x) \).

First derivative test (minimums)
First derivative test

Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (minimums)

- If $f'(x) < 0$ for x less than and close to a, and
Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (minimums)

- If $f'(x) < 0$ for x less than and close to a, and
- $f'(x) > 0$ for x greater than and close to a, then
Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (minimums)

- If $f'(x) < 0$ for x less than and close to a, and
- $f'(x) > 0$ for x greater than and close to a, then
- $f(x)$ has a minimum at a.

First derivative test
First derivative test

Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (minimums)

- If $f'(x) < 0$ for x less than and close to a, and
- $f'(x) > 0$ for x greater than and close to a, then
- $f(x)$ has a minimum at a.
First derivative test

Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (minimums)

- If $f'(x) < 0$ for x less than and close to a, and
- $f'(x) > 0$ for x greater than and close to a, then
- $f(x)$ has a minimum at a.

![Graph showing the first derivative test](image)
First derivative test

Suppose \(x = a \) is a critical point for the function \(f(x) \).

First derivative test (maxima)

- If \(f'(x) > 0 \) for \(x \) less than and close to \(a \), and
- \(f'(x) < 0 \) for \(x \) greater than and close to \(a \), then
 - \(f(x) \) has a maximum at \(a \).
Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (maximums)

- If $f'(x) > 0$ for x less than and close to a, and
First derivative test

Suppose \(x = a \) is a critical point for the function \(f(x) \).

First derivative test (maximums)

- If \(f'(x) > 0 \) for \(x \) less than and close to \(a \), and
- \(f'(x) < 0 \) for \(x \) greater than and close to \(a \), then
First derivative test

Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (maximums)

- If $f'(x) > 0$ for x less than and close to a, and
- $f'(x) < 0$ for x greater than and close to a, then
- $f(x)$ has a maximum at a.
First derivative test

Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (maximums)

- If $f'(x) > 0$ for x less than and close to a, and
- $f'(x) < 0$ for x greater than and close to a, then
- $f(x)$ has a maximum at a.
Suppose $x = a$ is a critical point for the function $f(x)$.

First derivative test (maximums)

- If $f'(x) > 0$ for x less than and close to a, and
- $f'(x) < 0$ for x greater than and close to a, then
- $f(x)$ has a maximum at a.

\[(-10.36, -6.33) \]
\[(-2.93, -13.64) \]
Second derivative test

Suppose \(x = a \) is a critical point of the function \(f(x) \)

Second derivative test

If

\[
\begin{align*}
\text{If } f''(a) > 0 \text{ then } f \text{ has a minimum at } a \\
\text{If } f''(a) < 0 \text{ then } f \text{ has a maximum at } a \\
\text{Note: If } f''(a) = 0 \text{ then we cannot conclude anything! E.g } x^3 \text{ or } x^4.
\end{align*}
\]
Suppose $x = a$ is a critical point of the function $f(x)$.

Second derivative test

If
- $f''(a) > 0$ then f has a minimum at a.
- $f''(a) < 0$ then f has a maximum at a.

Note: If $f''(a) = 0$, then we cannot conclude anything! E.g. x^3 or x^4.
Suppose $x = a$ is a critical point of the function $f(x)$

Second derivative test

If

- $f''(a) > 0$ then f has a minimum at a
- $f''(a) < 0$ then f has a maximum at a
Second derivative test

Suppose $x = a$ is a critical point of the function $f(x)$

Second derivative test

If

- $f''(a) > 0$ then f has a minimum at a
- $f''(a) < 0$ then f has a maximum at a
Second derivative test

Suppose $x = a$ is a critical point of the function $f(x)$

Second derivative test
If
- $f''(a) > 0$ then f has a minimum at a
- $f''(a) < 0$ then f has a maximum at a

Note: If $f''(a) = 0$ then we cannot conclude anything! E.g. x^3 or x^4.