Last time, we spoke about

- Graphing using calculus
Last time, we spoke about

- Graphing using calculus
- Horizontal asymptotes
Last time, we spoke about

- Graphing using calculus
- Horizontal asymptotes
- Vertical asymptotes
Last time, we spoke about

- Graphing using calculus
- Horizontal asymptotes
- Vertical asymptotes
- Role of the first/second derivative
... On the board.
Slanted asymptotes
Slanted asymptotes

- An asymptote is a straight line which the function approaches as \(x \to \pm \infty \).
Slanted asymptotes

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
• An asymptote is a straight line which the function approaches as $x \to \pm \infty$
• If a function has a slanted asymptote its gradient must approach a constant
• So we should find

$$\lim_{x \to \pm \infty} f'(x) = m$$

So then we know the function has a slanted asymptote

$$y = mx + b.$$
Slanted asymptotes

• An asymptote is a straight line which the function approaches as \(x \to \pm \infty \)

• If a function has a slanted asymptote its gradient must approach a constant

• So we should find

\[
\lim_{x \to \pm \infty} f'(x) = m
\]

• We then know the function has a slanted asymptote

\[
y = mx + b.
\]
Slanted asymptotes

- An asymptote is a straight line which the function approaches as \(x \to \pm \infty \).
- If a function has a slanted asymptote its gradient must approach a constant.
- So we should find
 \[\lim_{x \to \pm \infty} f'(x) = m \]
- We then know the function has a slanted asymptote \(y = mx + b \).
- To find \(b \):
 \[b = \lim_{x \to \pm \infty} (f(x) - mx) \]
Example time

... On the board.