Bifurcation

Often in real life situations we would like to study a system that includes an unknown parameter

\[
\frac{dy}{dt} = f(y, a)
\]

The behaviour of the solution depends on \(a \)!

Example

We have been studying populations growing logistically. We also considered their behaviour under harvesting, but suppose we don’t know exactly how many are harvested and we want to understand the effect of different harvesting rates.

\[
\frac{dN}{dt} = N(1 - N) - h
\]
We would like to study how the behaviour of the solution depends on the parameter.
• We would like to study how the behaviour of the solution depends on the parameter.
• The behaviour of the solution, depends on the equilibria and their stability!
Bifurcation

- We would like to study how the behaviour of the solution depends on the parameter.
- The behaviour of the solution, depends on the equilibria and their stability!
- Draw a bifurcation diagram
Bifurcation

- We would like to study how the behaviour of the solution depends on the parameter.
- The behaviour of the solution, depends on the equilibria and their stability!
- Draw a bifurcation diagram
- The bifurcation diagram tells us how the phase line changes for different parameters.
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]

\[a = 1.2 \]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
\[\frac{dy}{dt} = (y - a)(y - 3) \]
\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]

\(a = 2.4 \)
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]

\[
\begin{align*}
\frac{dy}{dt} &= (y - a)(y - 3) \\
\end{align*}
\]
\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[
\frac{dy}{dt} = (y - a)(y - 3)
\]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
A bifurcation diagram for the differential equation $rac{dy}{dt} = (y - a)(y - 3)$ is shown. The diagram illustrates how the behavior of the system changes as the parameter a varies. Critical points and bifurcations are marked with vertical lines and arrows, indicating transitions in the system's dynamics.
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]
Bifurcation diagram

\[\frac{dy}{dt} = (y - a)(y - 3) \]