Autonomous equations

Definition
An ODE of the form
\[\frac{dy}{dt} = f(y) \]

i.e. where the right hand side does not depend on \(t \), is called autonomous.
Autonomous equations

Definition
An ODE of the form

\[
\frac{dy}{dt} = f(y)
\]

e.g. where the right hand side does not depend on \(t \), is called autonomous

Important property
The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions
Autonomous equations

Definition
An ODE of the form

$$\frac{dy}{dt} = f(y)$$

i.e. where the right hand side does not depend on t, is called autonomous

Important property
The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions
Autonomous equations

Definition
An ODE of the form
\[\frac{dy}{dt} = f(y) \]
i.e. where the right hand side does not depend on \(t \), is called autonomous

Important property
The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions

We want points \((t, y)\) such that \(f(y) = 0 \).

- Suppose \(f(a) = 0 \).
Autonomous equations

Definition
An ODE of the form
\[\frac{dy}{dt} = f(y) \]
i.e. where the right hand side does not depend on \(t \), is called autonomous

Important property
The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions

We want points \((t, y)\) such that \(f(y) = 0 \).
- Suppose \(f(a) = 0 \).
- Then \((t, a)\) is on the nullcline, for any \(t \).
Autonomous equations

Definition
An ODE of the form
\[\frac{dy}{dt} = f(y) \]
i.e. where the right hand side does not depend on \(t \), is called autonomous.

Important property
The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions.

We want points \((t, y)\) such that \(f(y) = 0 \).

- Suppose \(f(a) = 0 \).
- Then \((t, a)\) is on the nullcline, for any \(t \).
- So the line \(y = a \) is part of the nullcline, whenever \(f(a) = 0 \).
Slope fields and nullclines for autonomous systems

Thus our slope field and nullclines look something like
Thus our slope field and nullclines look something like
Thus our slope field and nullclines look something like
Thus our slope field and nullclines look something like
Phase lines

Recipe to draw phase lines

1. Draw a vertical corresponding to the y axis.
2. Draw dots where equilibrium solutions live.
3. Draw up arrows on intervals between dots where the derivative is positive.
4. Draw down arrows on intervals between dots where the derivative is negative.

Definition

• An equilibrium is stable if the two arrows are pointing towards it.
• It is unstable if the two arrows are pointing away from it.
• It is semistable if the arrows point in the same direction.
Recipe to draw phase lines

1. Draw a vertical corresponding to \(y \) axis
Recipe to draw phase lines

1. Draw a vertical corresponding to y axis
2. Draw dots where equilibrium solutions live
Recipe to draw phase lines

1. Draw a vertical corresponding to y axis
2. Draw dots where equilibrium solutions live
3. Draw up arrows on intervals between dots where the derivative is positive
Phase lines

Recipe to draw phase lines

1. Draw a vertical corresponding to y axis
2. Draw dots where equilibrium solutions live
3. Draw up arrows on intervals between dots where the derivative is positive
4. Draw down arrows on intervals between dots where the derivative is negative

Definition

- An equilibrium is stable if the two arrows are pointing towards it.
- It is unstable if the two arrows are pointing away from it.
- It is semistable if the arrows point in the same direction.
Phase lines

Recipe to draw phase lines

1. Draw a vertical corresponding to y axis
2. Draw dots where equilibrium solutions live
3. Draw up arrows on intervals between dots where the derivative is positive
4. Draw down arrows on intervals between dots where the derivative is negative

Definition

• An equilibrium is stable if the two arrows are pointing towards it.
• It is unstable if the two arrows are pointing away from it.
• It is semistable if the arrows point in the same direction.
Phase lines

Recipe to draw phase lines

1. Draw a vertical corresponding to y axis
2. Draw dots where equilibrium solutions live
3. Draw up arrows on intervals between dots where the derivative is positive
4. Draw down arrows on intervals between dots where the derivative is negative

Definition

- An equilibrium is **stable** if the two arrows are pointing towards it.
Phase lines

Recipe to draw phase lines

1. Draw a vertical corresponding to y axis
2. Draw dots where equilibrium solutions live
3. Draw up arrows on intervals between dots where the derivative is positive
4. Draw down arrows on intervals between dots where the derivative is negative

Definition

- An equilibrium is **stable** if the two arrows are pointing towards it.
- It is **unstable** if the two arrows are pointing away from it.
Phase lines

Recipe to draw phase lines

1. Draw a vertical corresponding to \(y \) axis
2. Draw dots where equilibrium solutions live
3. Draw up arrows on intervals between dots where the derivative is positive
4. Draw down arrows on intervals between dots where the derivative is negative

Definition

- An equilibrium is **stable** if the two arrows are pointing towards it.
- It is **unstable** if the two arrows are pointing away from it.
- It is **semistable** if the arrows point in the same direction.
Phase lines

stable
unstable
semistable
semistable
\[
\frac{dy}{dt} = y(y - 10)(25 - y)
\]
Example

\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
\[
\frac{dy}{dt} = y(y - 10)(25 - y)
\]
Example

\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
Example

\[
\frac{dy}{dt} = y(y - 10)(25 - y)
\]
Example

\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
Example

\[
\frac{dy}{dt} = y(y - 10)(25 - y)
\]
Example

\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
\[
\frac{dy}{dt} = y(y - 10)(25 - y)
\]
Example

\(\frac{dy}{dt} = y(y - 10)(25 - y) \)

- 25 stable
- 10 unstable
- 0 stable
\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
Example

\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
Example

\[
\frac{dy}{dt} = y(y - 10)(25 - y)
\]
\[\frac{dy}{dt} = y(y - 10)(25 - y) \]
Classifying equilibria using derivatives

Classification of equilibria

If \(a \) is an equilibrium of

\[
\frac{dy}{dt} = f(y)
\]

(i.e. \(f(a) = 0 \)) then \(a \) is

• stable if \(f'(a) < 0 \)
• unstable if \(f'(a) > 0 \)
• indeterminate if \(f'(a) = 0 \)
Classification of equilibria

If \(a \) is an equilibrium of

\[
\frac{dy}{dt} = f(y)
\]

(i.e. \(f(a) = 0 \)) then \(a \) is

- stable if \(f'(a) < 0 \)
Classification of equilibria

If \(a \) is an equilibrium of

\[
\frac{dy}{dt} = f(y)
\]

(i.e. \(f(a) = 0 \)) then \(a \) is

- **stable** if \(f'(a) < 0 \)
- **unstable** if \(f'(a) > 0 \)
Classification of equilibria

If \(a \) is an equilibrium of

\[
\frac{dy}{dt} = f(y)
\]

(i.e. \(f(a) = 0 \)) then \(a \) is

- **stable** if \(f'(a) < 0 \)
- **unstable** if \(f'(a) > 0 \)
- **indeterminate** if \(f'(a) = 0 \)
Why?

\[\frac{dy}{dt} = f(y) \]
Why?

\[\frac{dy}{dt} = f(y) \]
Why?

\[\frac{dy}{dt} = f(y) \]
Why?

\[\frac{dy}{dt} = f(y) \]