Often it is impossible to solve a differential equation. E.g.

\[\frac{dy}{dt} = y^2 + t \]

(the *Riccati equation*) has no solutions that can be written in terms of usual functions like \(\sin x \), \(e^x \), etc.
Often it is impossible to solve a differential equation. E.g.

\[\frac{dy}{dt} = y^2 + t \]

(the \textit{Riccati equation}) has no solutions that can be written in terms of usual functions like \(\sin x \), \(e^x \), etc.

We want a method to estimate \(y(t) \) is we know that \(y(t_0) = y_0 \).
Euler's method

Let’s use Euler’s method!
Idea behind Euler's method

Suppose $y(t)$ is a solution to

$$\frac{dy}{dt} = f(t, y)$$

and that $y(t_0) = y_0$.

If h is a small number (e.g. $h = 0.1$), then we approximate $y(t_0 + h)$ using (t_0, y_0) and $(t_0 + h, y_1)$.
Idea behind Euler's method

Suppose $y(t)$ is a solution to

$$\frac{dy}{dt} = f(t, y)$$

and that $y(t_0) = y_0$.

If h is a small number (e.g. $h = 0.1$), then we approximate $y(t_0 + h)$ using

$$(t_0, y_0) \quad \quad (t_0 + h, y_1)$$

with

$$y_1 - y_0 \approx h f(t_0, y_0).$$
Idea behind Euler's method

\[y(t_0 + h) \approx y_1 \]
Idea behind Euler's method

\[y'(t_0) = \frac{\text{rise}}{\text{run}} = \frac{y_1 - y_0}{h} \]
Idea behind Euler's method

\[y' = f(t, y) \]

\[
(t_0, y_0) \\
(h, y_1 - y_0) \\
(t_0 + h, y_1)
\]

\[
y(t_0 + h) \approx y_1 = y_0 + hy'(t_0) = y_0 + hf(t_0, y_0)
\]
Idea behind Euler's method

\[\frac{dy}{dt} = f(t, y) \]

If we know that the solution satisfies \(y(t_0) = y_0 \) then

- let \(h \) be a small step forward in time

\[y_1 \approx y(t_1) = y_0 + hf(t_0, y_0) \]
Idea behind Euler's method

\[
\frac{dy}{dt} = f(t, y)
\]

If we know that the solution satisfies \(y(t_0) = y_0\) then

- let \(h\) be a small step forward in time
- we can get an approximate value for the solution at \(t = t_0 + h = t_1\)
Idea behind Euler's method

\[\frac{dy}{dt} = f(t, y) \]

If we know that the solution satisfies \(y(t_0) = y_0 \) then

- let \(h \) be a small step forward in time
- we can get an approximate value for the solution at \(t = t_0 + h = t_1 \)
- i.e. \(y(t_1) \approx y_1 \) where

\[y_1 = y_0 + hf(t_0, y_0) \]
Eulers method

To carry out Eulers method, we simply repeat this a number of times!

\[
\frac{dy}{dt} = f(t, y)
\]

Given an initial value \(y(t_0) = y_0 \). To approximate \(y(t) \) at \(t = a \) follow the steps:
- Choose an increment \(h \)
Euler's method

To carry out Euler's method, we simply repeat this a number of times!

\[
\frac{dy}{dt} = f(t, y)
\]

Given an initial value \(y(t_0) = y_0 \). To approximate \(y(t) \) at \(t = a \) follow the steps:

- Choose an increment \(h \)
- Set \(t_1 = t_0 + h \)
Eulers method

To carry out Eulers method, we simply repeat this a number of times!

\[\frac{dy}{dt} = f(t, y) \]

Given an initial value \(y(t_0) = y_0 \). To approximate \(y(t) \) at \(t = a \) follow the steps:

- Choose an increment \(h \)
- set \(t_1 = t_0 + h \)
- set \(y_1 = y_0 + hf(t_0, y_0) \)
Eulers method

To carry out Eulers method, we simply repeat this a number of times!

\[
\frac{dy}{dt} = f(t, y)
\]

Given an initial value \(y(t_0) = y_0\). To approximate \(y(t)\) at \(t = a\) follow the steps:

- Choose an increment \(h\)
- set \(t_1 = t_0 + h\)
- set \(y_1 = y_0 + hf(t_0, y_0)\)
- set \(t_2 = t_1 + h\)
To carry out Euler's method, we simply repeat this a number of times!

\[\frac{dy}{dt} = f(t, y) \]

Given an initial value \(y(t_0) = y_0 \). To approximate \(y(t) \) at \(t = a \) follow the steps:

- Choose an increment \(h \)
- set \(t_1 = t_0 + h \)
- set \(y_1 = y_0 + hf(t_0, y_0) \)
- set \(t_2 = t_1 + h \)
- set \(y_2 = y_1 + hf(t_1, y_1) \)
Eulers method

To carry out Eulers method, we simply repeat this a number of times!

\[
\frac{dy}{dt} = f(t, y)
\]

Given an initial value \(y(t_0) = y_0 \). To approximate \(y(t) \) at \(t = a \) follow the steps:

- Choose an increment \(h \)
- set \(t_1 = t_0 + h \)
- set \(y_1 = y_0 + hf(t_0, y_0) \)
- set \(t_2 = t_1 + h \)
- set \(y_2 = y_1 + hf(t_1, y_1) \)
- keep repeating until \(t_n \approx a \)
Eulers method

To carry out Eulers method, we simply repeat this a number of times!

\[
\frac{dy}{dt} = f(t, y)
\]

Given an initial value \(y(t_0) = y_0 \). To approximate \(y(t) \) at \(t = a \) follow the steps:

- Choose an increment \(h \)
- set \(t_1 = t_0 + h \)
- set \(y_1 = y_0 + hf(t_0, y_0) \)
- set \(t_2 = t_1 + h \)
- set \(y_2 = y_1 + hf(t_1, y_1) \)
- keep repeating until \(t_n \approx a \)
- then \(y(a) \approx y_n \).
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$0 + 0.5 \cdot (0^2 + 0)$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$0 + 0.5 \cdot (0^2 + 0)$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>$0 + 0.5 \cdot (0^2 + 0)$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>$0 + 0.5 \cdot (0^2 + 0)$</td>
</tr>
</tbody>
</table>
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
<th>$y_1 = 0 + 0.5 \cdot (0^2 + 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
<th>$y_1 = 0 + 0.5 \cdot (0^2 + 0)$</th>
<th>$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$y_1 = 0 + 0.5 \cdot (0^2 + 0)$</td>
<td>$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$y_1 = 0 + 0.5 \cdot (0^2 + 0)$</td>
<td>$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$</td>
<td>$y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1)$</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.78</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$y_1 = 0 + 0.5 \cdot (0^2 + 0)$

$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$

$y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1)$
An example

We will approximate \(y(2) \), where \(y \) obeys

\[
\frac{dy}{dt} = y^2 + t
\]

and \(y(0) = 0 \). Let \(h = 0.5 \).

<table>
<thead>
<tr>
<th>Iter.</th>
<th>(x)</th>
<th>(y)</th>
<th>(y_1 = 0 + 0.5 \cdot (0^2 + 0))</th>
<th>(y_2 = 0 + 0.5 \cdot (0^2 + 0.5))</th>
<th>(y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1))</th>
<th>(y_4 = 0.78 + 0.5 \cdot (0.78^2 + 1.5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.25</td>
<td>(y_2 = 0 + 0.5 \cdot (0^2 + 0.5))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.78</td>
<td>(y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1))</td>
<td>(y_4 = 0.78 + 0.5 \cdot (0.78^2 + 1.5))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An example

We will approximate $y(2)$, where y obeys

$$\frac{dy}{dt} = y^2 + t$$

and $y(0) = 0$. Let $h = 0.5$.

<table>
<thead>
<tr>
<th>Iter.</th>
<th>x</th>
<th>y</th>
<th>$y_1 = 0 + 0.5 \cdot (0^2 + 0)$</th>
<th>$y_2 = 0 + 0.5 \cdot (0^2 + 0.5)$</th>
<th>$y_3 = 0.25 + 0.5 \cdot (0.25^2 + 1)$</th>
<th>$y_4 = 0.78 + 0.5 \cdot (0.78^2 + 1.5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>