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Introduction

The fractal uncertainty principle (Dyatlov–Zahl, 2016)

“No function can be localized in both position and frequency
close to a fractal set.”

▶ Applications to quantum chaos (eigenfunction control and
spectral gaps on hyperbolic surfaces).

▶ Connections to harmonic analysis (additive energy, Fourier
decay, and Fourier restriction estimates; additive combinatorics;
spectral sets).
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Continuous uncertainty principles

Let Fh : L2(R) → L2(R) (0 < h ≪ 1) be the unitary semiclassical
Fourier transform

Fhf(ξ) :=
1√
2πh

∫
R
e−ixξ/hf(x) dx.

Continuous uncertainty principles (Dyatlov–Zahl, 2016)

An h-dependent family of sets {Xh}h>0 ⊆ P(R) is said to satisfy an
uncertainty principle with exponent β ∈ R if

∥1Xh
Fh1Xh

∥L2(R)→L2(R) = O(hβ) as h → 0.

(The subscript on X is typically elided.)
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Continuous uncertainty principles

Example: X = [0, h].

By Hölder’s inequality,

∥1XFh1X∥L2→L2 ≤ ∥1[0,h]∥L∞→L2∥Fh∥L1→L∞∥1[0,h]∥L2→L1

= h1/2 · (2πh)−1/2 · h1/2,

so X satisfies an uncertainty principle with exponent 1
2 .

Nicholas Hu (UCLA) FUPs for ellipsephic sets 2022-05-27 4 / 17



Continuous fractal uncertainty principles

For “regular” fractal sets X ⊆ [0, 1] of “dimension” δ ∈ [0, 1], we have
the basic fractal uncertainty principle (FUP) exponent

β0 := max

{
0,

1

2
− δ

}
.

Can this be improved upon (by obtaining β > β0 for δ-regular families
of sets)?
▶ Yes – when δ < 1, we can obtain β > 0: improvement for δ ≥ 1

2
(Bourgain–Dyatlov, 2017).

▶ Yes – when δ > 0, we can obtain β > 1
2 − δ: improvement for

δ ≤ 1
2 (Dyatlov–Jin, 2018).
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Ellipsephic sets

An ellipsephic ([­I.lIp"sEf.Ik]) set in base M is a set consisting of all
k-digit integers in base M with digits in some nonempty alphabet
A ⊆ ZM := {0, 1, . . . ,M − 1}. Such a set is denoted Ck(M,A) (or
simply Ck). In other words,

Ck = Ck(M,A) :=

{
k−1∑
d=0

adM
d : ad ∈ A

}
.

Note that Ck ⊆ ZN for N := Mk and |Ck| = |A|k = N logM |A|.

The dimension of Ck(M,A) is δ := logM |A| ∈ [0, 1].
We will not consider trivial alphabets with δ = 0 (|A| = 1) or δ = 1
(|A| = M).

Nicholas Hu (UCLA) FUPs for ellipsephic sets 2022-05-27 6 / 17



Ellipsephic sets

Example: M = 10, A = {2, 7}.

C2(M,A) = {22, 27, 72, 77}
δ = log10 2 ≈ 0.3
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Discrete fractal uncertainty principles

Let FN : CN → CN be the unitary discrete Fourier transform

FNu(j) :=
1√
N

∑
ℓ∈ZN

e−2πijℓ/Nu(ℓ) =
1√
N

∑
ℓ∈ZN

ωjℓ
Nu(ℓ).

Discrete fractal uncertainty principles (Dyatlov–Jin, 2017)

A family of ellipsephic sets {Ck(M,A)}k≥1 is said to satisfy an
uncertainty principle with exponent β ∈ R if

∥1CkFN1Ck∥ℓ2(ZN )→ℓ2(ZN ) ≲M,A N−β.
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Discrete fractal uncertainty principles

Example: M = 10, A = {2, 7}, k = 1.

∥1CkFN1Ck∥2 = ∥1{2,7}F101{2,7}∥2 =
∥∥∥∥ 1√

10

[
ω2·2
10 ω2·7

10

ω7·2
10 ω7·7

10

]∥∥∥∥
2

Example: M = 10, A = {0, 5}, k = 1.

∥1CkFN1Ck∥2 =
∥∥∥∥ 1√

10

[
ω0·0
10 ω0·5

10

ω5·0
10 ω5·5

10

]∥∥∥∥
2

=

∥∥∥∥ 1√
10

[
ω2·2
10 ω2·7

10

ω7·2
10 ω7·7

10

]∥∥∥∥
2

Notice that {0, 5}+ 2 = {2, 7} and[
ω0·2
10

ω5·2
10

] [
ω0·0
10 ω0·5

10

ω5·0
10 ω5·5

10

] [
ω2·0
10

ω2·5
10

] [
ω2·2
10

ω2·2
10

]
=

[
ω2·2
10 ω2·7

10

ω7·2
10 ω7·7

10

]
.
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Discrete fractal uncertainty principles

For ellipsephic sets of dimension δ ∈ [0, 1], we have the basic FUP
exponent

β0 := max

{
0,

1

2
− δ

}
.

Can this be improved upon (by obtaining β > β0 for ellipsephic sets of
dimension δ)?
▶ Yes – for all 0 < δ < 1, we can obtain β > β0 (Dyatlov–Jin, 2017).
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Discrete fractal uncertainty principles

Proof (basic FUP exponent):

∥1CkFN1Ck∥2 ≤ ∥FN∥2 = 1 = N−0

∥1CkFN1Ck∥2 ≤ ∥1CkFN1Ck∥F =

√
|Ck|2

(
1√
N

)2

= N−( 1
2
−δ)
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Discrete fractal uncertainty principles

Let rk = rk(M,A) := ∥1Ck(M,A)FN1Ck(M,A)∥2.
▶ Upper bound:

β ≤ 1− δ

2
.

▶ Apply 1Ck
FN1Ck

to 1{x} for some x ∈ Ck.
▶ Alphabet shift: if a ∈ ZM and A ⊆ {0, 1, . . . , (M − 1)− a}, then

rk(M,A+ a) = rk(M,A).

▶ Notice that Ck(M,A+ a) = Ck(M,A) + (a · · · a)M and apply the
shift theorem for the DFT.

▶ Submultiplicativity:
rk1+k2 ≤ rk1rk2 .

▶ Notice that Ck1+k2
= Ck1

Ck2
(in the sense of concatenation) and

use an FFT-like decomposition.
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Discrete fractal uncertainty principles

Let βk = − logN rk = − logM rk
k

.

Fekete’s lemma applied to the subadditive sequence {logM rk}k≥1

allows us to compute the maximal β as

β = lim
k→∞

βk = sup
k≥1

βk.
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Recent work

How does (the maximal) β depend on (M,A)?

Figure: Numerically approximated FUP exponents for all alphabets with M ≤ 10.
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Recent work

For any δ ≤ 1
2 , the improvement over the basic exponent can be

arbitrarily small, in that there exist sequences {(Mj ,Aj)} with
δ(Mj ,Aj) → δ and β(Mj ,Aj) → β0 (Dyatlov–Jin, 2017).

Is this also true for δ > 1
2? (Dyatlov, 2019)

▶ Yes ( · , 2021).
▶ For some sequences, the improvement over the basic exponent

might even be (nearly) exponentially small. (We have an upper
bound for β1 so far.)
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Recent work

Which bases/alphabets attain the upper bound β = 1−δ
2 ?

(Dyatlov–Jin, 2017)
▶ ‘Spectral’ alphabets (Dyatlov–Jin, 2017).
▶ Numerical experiments (M ≤ 25; later, M ≤ 39) suggest that

these might be the only ones.
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Thank you for your attention!
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