Fractal uncertainty principles for ellipsephic sets

Nicholas Hu

The University of California, Los Angeles (UCLA)

May 27, 2022

Nicholas Hu (UCLA)

FUPs for ellipsephic sets

2022-05-27

The fractal uncertainty principle (Dyatlov-Zahl, 2016)

"No function can be localized in both position and frequency close to a fractal set."

- Applications to quantum chaos (eigenfunction control and spectral gaps on hyperbolic surfaces).
- Connections to harmonic analysis (additive energy, Fourier decay, and Fourier restriction estimates; additive combinatorics; spectral sets).

Continuous uncertainty principles

Let $\mathcal{F}_h : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ ($0 < h \ll 1$) be the unitary semiclassical Fourier transform

$$\mathcal{F}_h f(\xi) := \frac{1}{\sqrt{2\pi h}} \int_{\mathbb{R}} e^{-ix\xi/h} f(x) \, dx.$$

Continuous uncertainty principles (Dyatlov–Zahl, 2016)

An *h*-dependent family of sets $\{X_h\}_{h>0} \subseteq \mathcal{P}(\mathbb{R})$ is said to satisfy an **uncertainty principle** with **exponent** $\beta \in \mathbb{R}$ if

 $\|\mathbbm{1}_{X_h}\mathcal{F}_h\mathbbm{1}_{X_h}\|_{L^2(\mathbb{R})\to L^2(\mathbb{R})}=\mathcal{O}(h^\beta)\quad\text{as }h\to 0.$

(The subscript on X is typically elided.)

Nicholas Hu (UCLA)

Example: X = [0, h].

By Hölder's inequality,

$$\begin{split} \|\mathbb{1}_X \mathcal{F}_h \mathbb{1}_X \|_{L^2 \to L^2} &\leq \|\mathbb{1}_{[0,h]} \|_{L^{\infty} \to L^2} \|\mathcal{F}_h\|_{L^1 \to L^{\infty}} \|\mathbb{1}_{[0,h]} \|_{L^2 \to L^1} \\ &= h^{1/2} \cdot (2\pi h)^{-1/2} \cdot h^{1/2}, \end{split}$$

so X satisfies an uncertainty principle with exponent $\frac{1}{2}$.

Continuous fractal uncertainty principles

For "regular" fractal sets $X \subseteq [0, 1]$ of "dimension" $\delta \in [0, 1]$, we have the **basic fractal uncertainty principle (FUP) exponent**

$$\beta_0 := \max\left\{0, \frac{1}{2} - \delta\right\}.$$

Can this be improved upon (by obtaining $\beta > \beta_0$ for δ -regular families of sets)?

▶ Yes – when $\delta < 1$, we can obtain $\beta > 0$: improvement for $\delta \ge \frac{1}{2}$ (Bourgain–Dyatlov, 2017).

▶ Yes – when $\delta > 0$, we can obtain $\beta > \frac{1}{2} - \delta$: improvement for $\delta \le \frac{1}{2}$ (Dyatlov–Jin, 2018).

An **ellipsephic** ([,i.lip'sɛf.ik]) **set** in **base** M is a set consisting of all k-digit integers in base M with digits in some nonempty **alphabet** $\mathcal{A} \subseteq \mathbb{Z}_M := \{0, 1, \dots, M-1\}$. Such a set is denoted $\mathcal{C}_k(M, \mathcal{A})$ (or simply \mathcal{C}_k). In other words,

$$\mathcal{C}_k = \mathcal{C}_k(M, \mathcal{A}) := \left\{ \sum_{d=0}^{k-1} a_d M^d : a_d \in \mathcal{A} \right\}.$$

Note that $C_k \subseteq \mathbb{Z}_N$ for $N := M^k$ and $|C_k| = |\mathcal{A}|^k = N^{\log_M |\mathcal{A}|}$.

The dimension of $C_k(M, A)$ is $\delta := \log_M |A| \in [0, 1]$. We will not consider trivial alphabets with $\delta = 0$ (|A| = 1) or $\delta = 1$ (|A| = M). Example: M = 10, $\mathcal{A} = \{2, 7\}$.

$$\mathcal{C}_2(M, \mathcal{A}) = \{22, 27, 72, 77\}$$
$$\delta = \log_{10} 2 \approx 0.3$$

Discrete fractal uncertainty principles

Let $\mathcal{F}_N:\mathbb{C}^N \to \mathbb{C}^N$ be the unitary discrete Fourier transform

$$\mathcal{F}_N u(j) := \frac{1}{\sqrt{N}} \sum_{\ell \in \mathbb{Z}_N} e^{-2\pi i j \ell/N} u(\ell) = \frac{1}{\sqrt{N}} \sum_{\ell \in \mathbb{Z}_N} \omega_N^{j\ell} u(\ell).$$

Discrete fractal uncertainty principles (Dyatlov–Jin, 2017)

A family of ellipsephic sets $\{C_k(M, A)\}_{k \ge 1}$ is said to satisfy an **uncertainty principle** with **exponent** $\beta \in \mathbb{R}$ if

$$\|\mathbb{1}_{\mathcal{C}_k}\mathcal{F}_N\mathbb{1}_{\mathcal{C}_k}\|_{\ell^2(\mathbb{Z}_N)\to\ell^2(\mathbb{Z}_N)}\lesssim_{M,\mathcal{A}}N^{-\beta}.$$

Discrete fractal uncertainty principles

Example: M = 10, $\mathcal{A} = \{2, 7\}$, k = 1.

$$\left\|\mathbb{1}_{\mathcal{C}_{k}}\mathcal{F}_{N}\mathbb{1}_{\mathcal{C}_{k}}\right\|_{2} = \left\|\mathbb{1}_{\{2,7\}}\mathcal{F}_{10}\mathbb{1}_{\{2,7\}}\right\|_{2} = \left\|\frac{1}{\sqrt{10}}\begin{bmatrix}\omega_{10}^{2\cdot2} & \omega_{10}^{2\cdot7}\\ \omega_{10}^{7\cdot2} & \omega_{10}^{7\cdot7}\end{bmatrix}\right\|_{2}$$

Example: M = 10, $\mathcal{A} = \{0, 5\}$, k = 1.

$$\left\|\mathbb{1}_{\mathcal{C}_{k}}\mathcal{F}_{N}\mathbb{1}_{\mathcal{C}_{k}}\right\|_{2} = \left\|\frac{1}{\sqrt{10}}\begin{bmatrix}\omega_{10}^{0.0} & \omega_{10}^{0.5}\\ \omega_{10}^{5.0} & \omega_{10}^{5.5}\end{bmatrix}\right\|_{2} = \left\|\frac{1}{\sqrt{10}}\begin{bmatrix}\omega_{10}^{2.2} & \omega_{10}^{2.7}\\ \omega_{10}^{7.2} & \omega_{10}^{7.7}\end{bmatrix}\right\|_{2}$$

Notice that $\{0,5\} + 2 = \{2,7\}$ and

$$\begin{bmatrix} \omega_{10}^{0\cdot2} & \\ & \omega_{10}^{5\cdot2} \end{bmatrix} \begin{bmatrix} \omega_{10}^{0\cdot0} & \omega_{10}^{0\cdot5} \\ & \omega_{10}^{5\cdot0} & \omega_{10}^{5\cdot5} \end{bmatrix} \begin{bmatrix} \omega_{10}^{2\cdot0} & \\ & \omega_{10}^{2\cdot5} \end{bmatrix} \begin{bmatrix} \omega_{10}^{2\cdot2} & \\ & \omega_{10}^{2\cdot2} \end{bmatrix} = \begin{bmatrix} \omega_{10}^{2\cdot2} & \omega_{10}^{2\cdot7} \\ & \omega_{10}^{7\cdot2} & \omega_{10}^{7\cdot7} \end{bmatrix}$$

For ellipsephic sets of dimension $\delta \in [0,1],$ we have the <code>basic FUP</code> exponent

$$\beta_0 := \max\left\{0, \frac{1}{2} - \delta\right\}.$$

Can this be improved upon (by obtaining $\beta > \beta_0$ for ellipsephic sets of dimension δ)?

▶ Yes – for all $0 < \delta < 1$, we can obtain $\beta > \beta_0$ (Dyatlov–Jin, 2017).

Proof (basic FUP exponent):

$$\|\mathbb{1}_{\mathcal{C}_{k}}\mathcal{F}_{N}\mathbb{1}_{\mathcal{C}_{k}}\|_{2} \leq \|\mathcal{F}_{N}\|_{2} = 1 = N^{-0}$$
$$\|\mathbb{1}_{\mathcal{C}_{k}}\mathcal{F}_{N}\mathbb{1}_{\mathcal{C}_{k}}\|_{2} \leq \|\mathbb{1}_{\mathcal{C}_{k}}\mathcal{F}_{N}\mathbb{1}_{\mathcal{C}_{k}}\|_{\mathrm{F}} = \sqrt{|\mathcal{C}_{k}|^{2}\left(\frac{1}{\sqrt{N}}\right)^{2}} = N^{-\left(\frac{1}{2}-\delta\right)}$$

Discrete fractal uncertainty principles

Let
$$r_k = r_k(M, \mathcal{A}) := \|\mathbb{1}_{\mathcal{C}_k(M, \mathcal{A})} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k(M, \mathcal{A})} \|_2.$$

Upper bound:

$$\beta \le \frac{1-\delta}{2}.$$

• Apply $\mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k}$ to $\mathbb{1}_{\{x\}}$ for some $x \in \mathcal{C}_k$.

▶ Alphabet shift: if $a \in \mathbb{Z}_M$ and $\mathcal{A} \subseteq \{0, 1, \dots, (M-1) - a\}$, then

$$r_k(M, \mathcal{A} + a) = r_k(M, \mathcal{A}).$$

Notice that $C_k(M, A + a) = C_k(M, A) + (a \cdots a)_M$ and apply the shift theorem for the DFT.

Submultiplicativity:

$$r_{k_1+k_2} \le r_{k_1} r_{k_2}.$$

Notice that C_{k1+k2} = C_{k1}C_{k2} (in the sense of concatenation) and use an FFT-like decomposition.

Let
$$\beta_k = -\log_N r_k = -rac{\log_M r_k}{k}.$$

Fekete's lemma applied to the subadditive sequence $\{\log_M r_k\}_{k\geq 1}$ allows us to compute the maximal β as

$$\beta = \lim_{k \to \infty} \beta_k = \sup_{k \ge 1} \beta_k.$$

How does (the maximal) β depend on (M, \mathcal{A}) ?

Figure: Numerically approximated FUP exponents for all alphabets with $M \leq 10$.

MICHOIDS HU (OCLA	Nich	iolas	Hu	(UC	LA
-------------------	------	-------	----	-----	----

For any $\delta \leq \frac{1}{2}$, the improvement over the basic exponent can be *arbitrarily small*, in that there exist sequences $\{(M_j, A_j)\}$ with $\delta(M_j, A_j) \rightarrow \delta$ and $\beta(M_j, A_j) \rightarrow \beta_0$ (Dyatlov–Jin, 2017).

Is this also true for $\delta > \frac{1}{2}$? (Dyatlov, 2019)

- Yes (· , 2021).
- For some sequences, the improvement over the basic exponent might even be (nearly) *exponentially small*. (We have an upper bound for β_1 so far.)

Which bases/alphabets attain the upper bound $\beta = \frac{1-\delta}{2}$? (Dyatlov–Jin, 2017)

- Spectral' alphabets (Dyatlov–Jin, 2017).
- ▶ Numerical experiments ($M \le 25$; later, $M \le 39$) suggest that these might be the only ones.

Thank you for your attention!