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Introduction

Consider the semilinear wave equation
(∂tt −∆x)u(t, x) = F (u(t, x)), (t, x) ∈ R× R3;

u(0, · ) = u0;

∂tu(0, · ) = u1.

When the initial data (u0, u1) is “small”, the solution to this equation
will “behave in the distant future or past” like the solution to a linear
wave equation

(∂tt −∆x)u(t, x) = 0, (t, x) ∈ R× R3;

u(0, · ) = u∗0;

∂tu(0, · ) = u∗1.

This phenomenon is called “(small-data) scattering”.
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Introduction

A commonly asked question in the study of nonlinear dispersive PDEs
(e.g., NLS, NLW, Klein–Gordon) is:

“Is the nonlinearity determined by how it scatters solutions?”
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Introduction

▶ Strong assumptions on the nonlinearity (e.g., analyticity) are
often made to obtain a positive answer.

▶ (Sá Barreto–Uhlmann–Wang, 2020): quintic-type nonlinearities
(|F (u)| ≈ |u|5) for the NLW equation in 3D; complicated argument
with many assumptions on the nonlinearity.

▶ (Killip–Murphy–Vis, an, 2023): power-type nonlinearities for the
NLS equation in 2D; much simpler argument with few
assumptions on the nonlinearity!

▶ We adapt the techniques of Killip, Murphy, and Vis, an to the
setting considered by Sá Barreto, Uhlmann, and Wang.
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Introduction: admissible nonlinearities

Definition (Admissible nonlinearity)

A nonlinearity F : R → R is considered admissible if:
▶ F (0) = 0

▶ |F (u)− F (v)| ≲ (|u|4 + |v|4)|u− v| (so |F (u)| ≲ |u|5)
▶ F (−u) = −F (u)

The archetypal admissible nonlinearity is F (u) = ±|u|4u. The
corresponding equation is known as the defocusing/focusing
energy-critical NLW equation because the rescaling u(t, x) 7→
λu(λ2t, λ2x) (for λ > 0) preserves the energy of solutions,

E(u) :=
1

2

ˆ
R3
|∇u(t, x)|2 + |∂tu(t, x)|

2 dx± 1

6

ˆ
R3
|u(t, x)|6 dx.
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Introduction: solutions of the NLW equation

The NLW equation can be written as

∂t

[
u(t)
∂tu(t)

]
=

[
0 1
∆ 0

]
︸ ︷︷ ︸

A

[
u(t)
∂tu(t)

]
+

[
0

F (u(t))

]
,

so
e−At∂t

[
u(t)
∂tu(t)

]
= e−AtA

[
u(t)
∂tu(t)

]
+ e−At

[
0

F (u(t))

]
.

Hence
∂t

(
e−At

[
u(t)
∂tu(t)

])
= e−At

[
0

F (u(t))

]
.

Integrating and rearranging, we obtain[
u(t)
∂tu(t)

]
= eAt

[
u(0)
∂tu(0)

]
+

ˆ t

0
eA(t−s)

[
0

F (u(s))

]
ds.
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Introduction: solutions of the NLW equation

The propagator for the linear wave equation is

U(t) := eAt = exp

[
0 t
t∆ 0

]
=

 cos(t|∇|) sin(t|∇|)
|∇|

−|∇| sin(t|∇|) cos(t|∇|)

 ,

where |∇| =
√
−∆.

We therefore have the Duhamel formula[
u(t)
∂tu(t)

]
= U(t)

[
u(0)
∂tu(0)

]
+

ˆ t

0
U(t− s)

[
0

F (u(s))

]
ds.
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Introduction: solutions of the NLW equation

Definition (Solution)

A function u : R× R3 → R is said to be a (strong) global solution of
the NLW equation if (u, ∂tu) ∈ C0

t Ḣ
1
x(K × R3)× C0

t L
2
x(K × R3) and

u ∈ L5
tL

10
x (K × R3) for all compact sets K ⊆ R and if u satisfies the

Duhamel formula[
u(t)
∂tu(t)

]
= U(t)

[
u0
u1

]
+

ˆ t

0
U(t− s)

[
0

F (u(s))

]
ds.

Theorem (Strichartz estimates)

If u : R× R3 → R is a global solution of the NLW equation, then

∥(u, ∂tu)∥L∞
t Ḣ

1
x×L

∞
t L

2
x
+ ∥u∥

L
5
tL

10
x

≲ ∥(u0, u1)∥Ḣ1×L
2 + ∥F (u)∥

L
1
tL

2
x
.
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Introduction: small-data scattering

Theorem (Small-data scattering)

Let F be an admissible nonlinearity for the NLW equation. Then there
exists an η > 0 such that the NLW equation has a unique global
solution u satisfying

∥(u, ∂tu)∥L∞
t Ḣ

1
x×L

∞
t L

2
x
+ ∥u∥

L
5
tL

10
x

≲ ∥(u0, u1)∥Ḣ1×L
2

whenever (u0, u1) ∈ Bη, where

Bη := {(u0, u1) ∈ Ḣ1(R3)× L2(R3) : ∥(u0, u1)∥Ḣ1×L
2 < η}.

(Continued on the next slide.)
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Introduction: small-data scattering

Theorem (Small-data scattering, continued)

This solution scatters in Ḣ1(R3)× L2(R3) as t → ±∞, meaning that
there exist (necessarily unique) asymptotic states (u±0 , u

±
1 ) ∈ Ḣ1 × L2

for which ∥∥∥∥[ u(t)
∂tu(t)

]
− U(t)

[
u±0
u±1

]∥∥∥∥
Ḣ

1×L
2

→ 0 as t → ±∞.

In addition, for all (u−0 , u
−
1 ) ∈ Bη, there exists a unique global solution

u to the NLW equation and a unique asymptotic state (u+0 , u
+
1 ) ∈

Ḣ1 × L2 for which the above holds.
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Introduction: small-data scattering

The map
(u0, u1) 7→ (u+0 , u

+
1 )

implicitly defined by this theorem (on some open ball Bη ⊆ Ḣ1 × L2)
will be referred to as the wave operator and will be denoted W

F
.

The map
(u−0 , u

−
1 ) 7→ (u+0 , u

+
1 )

is known as the scattering operator and will be denoted S
F

.
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Introduction: determination of the nonlinearity

Theorem (Determination of the nonlinearity)

Suppose that F and F̃ are admissible nonlinearities for the NLW
equation and that Bη and Bη̃ are corresponding balls given by the
small-data scattering theorem. If W

F
and W

F̃
, or S

F
and S

F̃
, agree on

Bη ∩Bη̃ (that is, the smaller of the two balls), then F = F̃ .

(We will only discuss the case where the wave operators agree as the case where the
scattering operators agree can be treated similarly.)
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Introduction: determination of the nonlinearity

Proof (outline)
▶ Small-data scattering and asymptotics for the wave (and

scattering) operators

W
F
= [formula] = [approximate formula] + [error]

▶ Reduction to a convolution equation

W
F
= W

F̃
=⇒ H ∗ w = H̃ ∗ w

▶ Deconvolutional determination of the nonlinearity

H ∗ w = H̃ ∗ w =⇒ H = H̃ =⇒ F = F̃
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Small-data scattering
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Small-data scattering

Theorem (Small-data scattering)

Let F be an admissible nonlinearity for the NLW equation. Then there
exists an η > 0 such that the NLW equation has a unique global
solution u satisfying

∥(u, ∂tu)∥L∞
t Ḣ

1
x×L

∞
t L

2
x
+ ∥u∥

L
5
tL

10
x

≲ ∥(u0, u1)∥Ḣ1×L
2

whenever (u0, u1) ∈ Bη, where

Bη := {(u0, u1) ∈ Ḣ1(R3)× L2(R3) : ∥(u0, u1)∥Ḣ1×L
2 < η}.
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Small-data scattering
Proof (sketch)

Consider the nonempty complete metric space (X, d), where

X := {u : R× R3 → R :

(u, ∂tu) ∈ C0
t Ḣ

1
x × C0

t L
2
x, u ∈ L5

tL
10
x ,

∥(u, ∂tu)∥L∞
t Ḣ

1
x×L

∞
t L

2
x
+ ∥u∥

L
5
tL

10
x

≤ 2C∥(u0, u1)∥Ḣ1×L
2}

for some constant C > 0 and

d(u, v) := ∥(u, ∂tu)− (v, ∂tv)∥L∞
t Ḣ

1
x×L

∞
t L

2
x
+ ∥u− v∥

L
5
tL

10
x
.

Define a map Φ on X using the Duhamel formula,[
(Φ(u))(t)
(∂tΦ(u))(t)

]
:= U(t)

[
u0
u1

]
+

ˆ t

0
U(t− s)

[
0

F (u(s))

]
ds.
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Small-data scattering

Proof (sketch)

Show that Φ is a contraction on (X, d) whenever (u0, u1) ∈ Bη and η is
sufficiently small. By the Banach fixed point theorem, we then have[

u(t)
∂tu(t)

]
=

[
(Φ(u))(t)
(∂tΦ(u))(t)

]
= U(t)

[
u0
u1

]
+

ˆ t

0
U(t− s)

[
0

F (u(s))

]
ds.

for some unique u ∈ X, meaning that u is a solution!
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Small-data scattering

Theorem (Small-data scattering, continued)

This solution scatters in Ḣ1(R3)× L2(R3) as t → ±∞, meaning that
there exist (necessarily unique) asymptotic states (u±0 , u

±
1 ) ∈ Ḣ1 × L2

for which ∥∥∥∥[ u(t)
∂tu(t)

]
− U(t)

[
u±0
u±1

]∥∥∥∥
Ḣ

1×L
2

→ 0 as t → ±∞.

In addition, for all (u−0 , u
−
1 ) ∈ Bη, there exists a unique global solution

u to the NLW equation and a unique asymptotic state (u+0 , u
+
1 ) ∈

Ḣ1 × L2 for which the above holds.
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Small-data scattering
Proof (sketch)

WLOG, consider t → +∞. We want to show that

(u(t), ∂tu(t)) ≈ U(t)(u+0 , u
+
1 ) in Ḣ1 × L2 as t → +∞.

Since U(t) is unitary on Ḣ1 × L2 for all t and U(t)−1 = U(−t), this is
equivalent to

U(−t)(u(t), ∂tu(t)) ≈ (u+0 , u
+
1 ) in Ḣ1 × L2 as t → +∞.

We found that[
u(t)
∂tu(t)

]
= U(t)

[
u0
u1

]
+

ˆ t

0
U(t− s)

[
0

F (u(s))

]
ds,

so we expect (and indeed, it can be shown) that[
u0
u1

]
+

ˆ ∞

0
U(−s)

[
0

F (u(s))

]
ds =

[
u+0
u+1

]
.
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Small-data scattering

This argument shows that the wave operator is given by

W
F

([
u0
u1

])
=

[
u0
u1

]
+

ˆ ∞

0
U(−t)

[
0

F (u(t))

]
dt,

where u is the solution of the NLW equation with initial data (u0, u1).

The Born approximation to W
F

is

W
F

([
u0
u1

])
≈
[
u0
u1

]
+

ˆ ∞

0
U(−t)

[
0

F (ulin(t))

]
dt,

where [
ulin(t)
∂tulin(t)

]
:= U(t)

[
u0
u1

]
.
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Small-data scattering

Corollary (Small-data asymptotics for the wave operator)

Suppose that F is an admissible nonlinearity for the NLW equation and
that Bη is a corresponding ball given by the small-data scattering
theorem. If ulin denotes the solution of the linear wave equation with
initial data (u0, u1) ∈ Bη, then (in Ḣ1 × L2) we have

W
F

([
u0
u1

])
=

[
u0
u1

]
+

ˆ ∞

0
U(−t)

[
0

F (ulin(t))

]
dt+O

(∥∥∥∥[u0u1
]∥∥∥∥9

Ḣ
1×L

2

)
.
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Small-data scattering

Proof

Comparing the formula for the wave operator to that of its Born
approximation, we see that we need to prove that∥∥∥∥ˆ ∞

0
U(−t)

[
0

F (u(t))− F (ulin(t))

]
dt

∥∥∥∥
Ḣ

1×L
2
≲

∥∥∥∥[u0u1
]∥∥∥∥9

Ḣ
1×L

2
,

which we will do by duality.
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Small-data scattering

Proof

Fix some (v0, v1) ∈ Ḣ1 × L2 and let vlin denote the solution of the
linear wave equation with initial data (v0, v1). Then〈ˆ ∞

0
U(−t)

[
0

F (u(t))− F (ulin(t))

]
dt,

[
v0
v1

]〉
Ḣ

1×L
2

=

ˆ ∞

0

〈[
0

F (u(t))− F (ulin(t))

]
, U(t)

[
v0
v1

]〉
Ḣ

1×L
2
dt

=

ˆ ∞

0

〈[
0

F (u(t))− F (ulin(t))

]
,

[
vlin(t)
∂tvlin(t)

]〉
Ḣ

1×L
2
dt

=

ˆ ∞

0

〈
F (u(t))− F (ulin(t)), ∂tvlin(t)

〉
L
2 dt.
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Small-data scattering
Proof

By Hölder’s inequality, the properties of F , the estimates for u, and
the Strichartz estimates, we have∣∣∣∣ˆ ∞

0

〈
F (u(t))− F (ulin(t)), ∂tvlin(t)

〉
L
2 dt

∣∣∣∣
≤ ∥F (u)− F (ulin)∥L1

tL
2
x
· ∥∂tvlin∥L∞

t L
2
x

≲ (∥u∥4
L
5
tL

10
x
+ ∥ulin∥

4
L
5
tL

10
x
)∥u− ulin∥L5

tL
10
x
· ∥∂tvlin∥L∞

t L
2
x
,

where
∥u∥4

L
5
tL

10
x

≲ ∥(u0, u1)∥
4

Ḣ
1×L

2 ,

∥ulin∥
4

L
5
tL

10
x

≲ ∥(u0, u1)∥
4

Ḣ
1×L

2 ,

∥u− ulin∥L5
tL

10
x

≲ ∥F (u)∥
L

1
tL

2
x
≲ ∥u∥5

L
5
tL

10
x

≲ ∥(u0, u1)∥
5

Ḣ
1×L

2 ,

∥∂tvlin∥L∞
t L

2
x
≤

∥∥∥∥(vlin, ∂tvlin)∥Ḣ1
x×L

2
x

∥∥∥
L

∞
t

= ∥(v0, v1)∥Ḣ1×L
2 .
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Reduction to a convolution equation
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Reduction to a convolution equation

Proposition (Reduction to a convolution equation)

Suppose that F and F̃ are admissible nonlinearities for the NLW
equation. For τ ∈ R, define

H(τ) := F ′(eτ )e−4τ + F (eτ )e−5τ

and define H̃(τ) analogously. Then H, H̃ ∈ L∞(R), and under the
hypotheses of the main theorem, we have

H ∗ w = H̃ ∗ w,

where
w(τ) := [some function in L1(R)].
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Reduction to a convolution equation
The proof of this proposition involves considering a specific solution
ulin of the linear wave equation with initial data (u0, u1) ∈ Ḣ1 × L2.

For α, ε > 0, we define

uα,εlin (t, x) := αulin((α/ε)
2t, (α/ε)2x),

which solves the linear wave equation with initial data

(uα,ε0 , uα,ε1 ) := (uα,εlin (0), ∂tu
α,ε
lin (0)).

Under this rescaling,

∥(uα,ε0 , uα,ε1 )∥
Ḣ

1×L
2 = ε∥(u0, u1)∥Ḣ1×L

2 .

In particular, if F is an admissible nonlinearity for the NLW equation
and Bη is a corresponding ball given by the small-data scattering
theorem, then (uα,ε0 , uα,ε1 ) ∈ Bη for all ε ≪ η.
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Reduction to a convolution equation
This solution will also have the property that

ulin(t, x) = ∂tvlin(t, x),

where vlin is itself a solution of the linear wave equation with initial
data (v0, v1) ∈ Ḣ1 × L2.

For α, ε > 0, we define vα,εlin so that

uα,εlin (t, x) = ∂tv
α,ε
lin (t, x).

Then vα,εlin solves the linear wave equation with initial data

(vα,ε0 , vα,ε1 ) := (vα,εlin (0), ∂tv
α,ε
lin (0)).

Under this rescaling,

∥(vα,ε0 , vα,ε1 )∥
Ḣ

1×L
2 = (α/ε)−2ε∥(v0, v1)∥Ḣ1×L

2 .
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Reduction to a convolution equation

Proof (of the reduction)

Observe that
ˆ ∞

0

〈
F (uα,εlin (t)), u

α,ε
lin (t)

〉
L
2 dt

=

ˆ ∞

0

〈
F (uα,εlin (t)), ∂tv

α,ε
lin (t)

〉
L
2 dt

=

ˆ ∞

0

〈[
0

F (uα,εlin (t))

]
, U(t)

[
vα,ε0

vα,ε1

]〉
Ḣ

1×L
2
dt

=

〈ˆ ∞

0
U(−t)

[
0

F (uα,εlin (t))

]
dt,

[
vα,ε0

vα,ε1

]〉
Ḣ

1×L
2
.
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Reduction to a convolution equation
Proof

Since W
F
((uα,ε0 , uα,ε1 )) = W

F̃
((uα,ε0 , uα,ε1 )) (for all ε ≪ η, η̃), we have

ˆ ∞

0
U(−t)

[
0

F (uα,εlin (t))

]
dt

=

ˆ ∞

0
U(−t)

[
0

F̃ (uα,εlin (t))

]
dt+O

(∥∥∥∥[uα,ε0

uα,ε1

]∥∥∥∥9
Ḣ

1×L
2

)
.

Hence ˆ ∞

0

〈
F (uα,εlin (t)), u

α,ε
lin (t)

〉
L
2 dt

=

ˆ ∞

0

〈
F̃ (uα,εlin (t)), u

α,ε
lin (t)

〉
L
2 dt+O(ε9)

∥∥∥∥[vα,ε0

vα,ε1

]∥∥∥∥
Ḣ

1×L
2

=

ˆ ∞

0

〈
F̃ (uα,εlin (t)), u

α,ε
lin (t)

〉
L
2 dt+Oα(ε

12).
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Reduction to a convolution equation

Proof

On the other hand, if G(u) := F (u)u, then
ˆ ∞

0

〈
F (uα,εlin (t)), u

α,ε
lin (t)

〉
L
2 dt

=

ˆ ∞

0

ˆ
R3

G(uα,εlin (t)) dx dt

=

ˆ ∞

0

ˆ
R3

ˆ u
α,ε
lin (t)

0
G′(λ) dλ dx dt

=

ˆ ∞

0
G′(λ)

ˆ ∞

0

ˆ
R3

1{λ<u
α,ε
lin (t,x)}(t, x, λ) dx dt dλ

=

ˆ ∞

0
G′(λ)

ˆ ∞

0

ˆ
R3

1{λ<ulin(t,x)}((α/ε)
2t, (α/ε)2x, λ/α) dx dt dλ.
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Reduction to a convolution equation
Proof

Thus, if
m(λ) :=

∣∣{(t, x) ∈ (0,∞)× R3 : ulin(t, x) > λ}
∣∣,

then ˆ ∞

0

〈
F (uα,εlin (t)), u

α,ε
lin (t)

〉
L
2 dt

=

ˆ ∞

0
G′(λ)(α/ε)−8m(λ/α) dλ

=
ε8

α8

ˆ ∞

−∞
G′(eτ )eτm(eτ−logα) dτ (λ =: eτ )

= · · · = 16πε8

3α2 (H ∗ w)(log 2α),

where H(τ) = G′(eτ )e−5τ and w(τ) := 12
π e−6τm(e−(τ−log 2)).
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Reduction to a convolution equation

Proof

Finally, given a τ0 ∈ R, let α := 1
2e

τ0 so that τ0 = log 2α. Combining the
above, we deduce that

(H ∗ w)(τ0) = (H̃ ∗ w)(τ0) +O(ε4).

Taking ε → 0, we arrive at the conclusion.
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Reduction to a convolution equation

Task
Find a solution ulin of the linear wave equation with initial data
(u0, u1) ∈ Ḣ1 × L2 for which:
▶ ulin(t, x) = ∂tvlin(t, x) (where vlin is a solution of the linear wave

equation with initial data (v0, v1) ∈ Ḣ1 × L2)
▶ w(τ) = 12

π e−6τm(e−(τ−log 2)) is computable/analyzable (where
m(λ) =

∣∣{(t, x) ∈ (0,∞)× R3 : ulin(t, x) > λ}
∣∣)

Approach

▶ Consider radially symmetric solutions, whose radial rescalings
satisfy a 1D linear wave equation.

▶ Use d’Alembert’s formula to write the general solution of this
equation and search for a suitable particular solution.
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Reduction to a convolution equation

The radially symmetric solution

ulin(t, x) :=
f(r − t)− f(r + t)

r
, r := |x|

formed from the triangular function f(s) := max {1− |s|, 0} works.

After some computation, we find that

w(τ) =

(
e−3τ − 4e−6τ

(e−τ + 1)3

)
1(0,∞)(τ).
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Deconvolutional determination of the nonlinearity
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Deconvolutional determination of the nonlinearity

Now that we have H ∗ w = H̃ ∗ w, we seek to formally “deconvolve”
with w to conclude that H = H̃, from which it will follow that F = F̃ .

The tool that will enable us to do so is the following formulation of
Wiener’s L1 Tauberian theorem.

Theorem (Wiener’s Tauberian theorem)

Let f ∈ L1(R) and g ∈ L∞(R). If f ∗ g = 0 and f̂ has no zeroes, then
g = 0.

Proposition

Let w be as defined previously. Then ŵ has no zeroes.
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Deconvolutional determination of the nonlinearity

Task
For the solution ulin found previously, ensure that ŵ has no zeroes.
In our case,

w(τ) =

(
e−3τ − 4e−6τ

(e−τ + 1)3

)
1(0,∞)(τ).

Approach

▶ Decompose w as w = w0 + w1 (since ŵ does not seem to be
explicitly computable).

▶ Compute ŵ0, which has no zeroes, and show that ŵ1 remains
sufficiently small.
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Deconvolutional determination of the nonlinearity

Proof (of main theorem)

We know that H ∗ w = H̃ ∗ w. Wiener’s Tauberian theorem and the
nonvanishing of ŵ imply that H = H̃.

Retracing the definitions of H and H̃, we conclude that F = F̃ (recall
that H(τ) = G′(eτ )e−5τ , where G(u) = F (u)u).
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Future work
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Future work

Consider the Schrödinger equation in 1D with a (Schwartz) potential
and a cubic-type nonlinearity:{

i∂tu(t, x) = (−∆x + V (x))u(t, x) + F (u(t, x)), (t, x) ∈ R× R;
u(0, · ) = u0.

Can the potential be determined from the scattering behaviour?
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Future work: background
Let us first consider the linear Schrödinger equation
i∂tu(t, x) = (−∆x + V (x))u(t, x). The stationary states of this
equation are functions of space that solve the time-independent
Schrödinger equation

(−∆+ V )︸ ︷︷ ︸
H

f = k2f for some k.

For k ∈ R \ {0}, let f1( · ; k) and f2( · ; k) denote the solutions of the
latter that satisfy f1(x; k) ∼ e+ikx as x → +∞ and f2(x; k) ∼ e−ikx as
x → −∞ (called Jost solutions). Then there exist functions T , R1,
and R2 (called transmission and reflection coefficients) such that

f1(x; k) ∼ 1
T (k)e

+ikx + R2(k)
T (k) e

−ikx as x → −∞,

f2(x; k) ∼ 1
T (k)e

−ikx + R1(k)
T (k) e

+ikx as x → +∞.
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Future work: background

In this setting, scattering behaviour is encoded by the scattering
matrix

S(k) :=

[
T (k) R2(k)
R1(k) T (k)

]
.

It is known that the scattering matrix is determined by R := R1 (or
R2) and the eigenvalues −β2

n < · · · < −β2
1 < 0 of H. These together

with the constants ∥f1(x; iβj)∥
−2

L
2
x

defined by the corresponding
eigenfunctions determine the potential (Faddeev, 1958).

However, S alone does not determine the potential (when H has
eigenvalues) (Deift, 1978)!

Nicholas Hu (UCLA) Determination of the nonlinearity for NLW 2023-08-09 44 / 47



Future work: background

Theorem (Deift–Trubowitz, 1979)

Let β > βn and define gα := f1( · ; iβ) + αf2( · ; iβ) for α > 0. Then the
reflection coefficient for the potential

Vα := V − 2(log gα)
′′

is Rα(k) := −k+iβ
k−iβR(k) and the eigenvalues of

Hα := −∆+ Vα

are −β2 < −β2
n < · · · < −β2

1 < 0.

In particular, starting from the “vacuum potential” V = 0, one can
construct a family of “reflectionless potentials”.
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Future work: ideas

▶ The nonlinearity might actually allow us to glean more
information about the potential because, for instance, varying
the amplitude of the initial data changes the solution nonlinearly.

▶ In the focusing cubic case (F (u) = −|u|2u), we have access to
soliton solutions. By scaling these so that they are sufficiently
tall/narrow/fast, we might be able to “probe” the potential.
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Thank you for your attention!
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