
Implementation of Saddle-Point Minimal Residual Solvers

Nicholas Hu∗

April 30, 2019

1 Introduction

In this thesis, we describe the implementation of the Saddle-Point Minimal Residual (SPMR) solvers
developed by Estrin and Greif [3]. These solvers compose a family of iterative methods for the
solution of large and sparse saddle-point systems: linear systems of the form[

A GT
1

G2 0

][
x

y

]
=

[
f

g

]
, (1)

where A ∈ Rn×n, G1, G2 ∈ Rm×n, f ∈ Rn, and g ∈ Rm (with n > m).
The term “saddle-point” originates from the equality-constrained quadratic programming prob-

lem

min
1

2
xTAx− fTx

subject to Bx = g,

where A ∈ Rn×n is symmetric positive-definite and B ∈ Rm×n has full rank. The Lagrangian of
this problem is L(x, y) = (1

2x
TAx − fTx) − yT (g − Bx), where y represents a vector of Lagrange

multipliers and the critical points of the Lagrangian are the solutions to

∇L(x, y) =

[
∇x L(x, y)

∇y L(x, y)

]
=

[
Ax− f +BT y

Bx− g

]
=

[
0

0

]
,

which is precisely (1) with G1 = G2 = B. These critical points are in fact saddle points of L, since
its Hessian

HL(x, y) =

[
A BT

B 0

]
is indefinite, which can be seen by considering the congruence transformation[

I 0

−BA−1 I

][
A BT

B 0

][
I 0

−BA−1 I

]T
=

[
A 0

0 −BA−1BT

]
.

To wit, −BA−1BT is symmetric negative-definite, whence HL is indefinite by Sylvester’s law of
inertia.

∗Department of Computer Science, The University of British Columbia, Vancouver BC, Canada, njhu@cs.ubc.ca.

1

mailto:njhu@cs.ubc.ca

Besides constrained optimization, saddle-point systems naturally arise in fields such as compu-
tational fluid dynamics, economics, electromagnetism, dynamical systems, and optimal control, as
well as in solving PDEs with constraints. For more examples and properties of saddle-point systems,
we refer the reader to the comprehensive survey of the subject by Benzi, Golub, and Liesen [1].

In the general formulation of (1), no assumptions are made about A (not even invertibility!)
and we allow G1 6= G2. The novel feature of SPMR is the exploitation of the block structure of the
saddle-point matrix

K =

[
A GT

1

G2 0

]
,

which generic iterative solvers (e.g., GMRES) tend to disregard. The off-diagonal blocks GT
1 and G2

are bidiagonalized while A is diagonalized, allowing the SPMR iterates to be updated by short-term
recurrences based on residual minimization or quasi-minimization, a process which we describe in
Section 2. In Section 3, we will discuss the implementation of these methods in Matlab and Julia.

2 The SPMR Family of Methods

2.1 Schur Complement and Nullspace Methods

The SPMR family of methods can be divided into two subfamilies depending on whether the leading
block A is readily invertible.

If A is efficiently invertible and x̂ is the solution to Ax̂ = f , the substitution x′ := x− x̂ yields
the system [

A GT
1

G2 0

][
x′

y

]
=

[
0

g −G2x̂

]
.

We may therefore assume in this case, without loss of generality, that the system is of the form[
A GT

1

G2 0

][
x

y

]
=

[
0

g

]
. (2)

These methods bear the suffix “-SC”, as they implicitly solve the system (K/A)y = g −G2x̂, where

K/A = −G2A
−1GT

1

denotes the Schur complement of A in K. Indeed, it can be shown that they are mathematically
equivalent to other known iterative methods (namely, USYMQR [7] and QMR [4]) applied to S :=
−(K/A). Even so, the SPMR family proves to be numerically superior to such methods when S is
ill-conditioned, just as LSQR improves upon CG applied to the normal equations [3].

On the other hand, if we wish to avoid inverting A but are able to find a particular solution x̂
to G2x̂ = g, then the same substitution results in the system[

A GT
1

G2 0

][
x′

y

]
=

[
f −Ax̂

0

]
.

We may therefore assume that g = 0 in (1). For this subfamily of methods, we also assume that we
have access to nullspace bases H1, H2 of G1, G2, respectively – that is, matrices H1, H2 ∈ Rn×(n−m)

2

such that G1H1 = G2H2 = 0∗. Now if (1) has been reduced to the form[
A GT

1

G2 0

][
x

y

]
=

[
f

0

]
,

the second equation G2x = 0 implies that x = H2q for some q ∈ Rn−m. Left-multiplying the first
equation by HT

1 reveals that

HT
1 f = HT

1 Ax+HT
1 G

T
1 y

= HT
1 AH2q + (G1H1)T y

= HT
1 AH2q.

(3)

If A were invertible, this would be the Schur complement system implicitly solved when consid-
ering the saddle-point system [

A AH2

HT
1 A 0

][
p

q

]
=

[
0

−HT
1 f

]
(4)

(cf. equation (2)). More precisely, if we denote the saddle-point matrix in (4) by KD, then (3) is
the equation (KD/A)q = −HT

1 f . The matrix

KD =

[
A AH2

HT
1 A 0

]

is called the inverse-free dual saddle-point matrix, in reference to the dual saddle-point matrix

K′D =

[
A−1 H2

HT
1 0

]
,

which also satisfies (K′D/A
−1)q = −HT

1 f (henceforth, we will use “dual system” and “dual saddle-
point matrix” exclusively in reference to (4) and KD) [1, 3].

Although A was not assumed to be invertible in this case, it turns out that this assumption is
not necessary for this dual formulation to be meaningful. Under the assumption that the original
saddle-point matrix K is nonsingular, Estrin and Greif show that there exists a solution to (4) such
that p ∈ ker(G2). Moreover, they show that x and y can be recovered by setting x = −p and then
solving the consistent overdetermined system GT

1 y = f−Ax [3, Thm. 1]. In practice, this means that
solvers based on (4) only compute x; the remaining block y must be recovered separately. However,
in many applications, such as when y is a vector of Lagrange multipliers, y is not even needed, so this
decoupling can be useful. Methods based on the dual system are given the suffix “-NS”, indicating
their usage of nullspace bases for the off-diagonal blocks.

2.2 Orthogonalization and Biorthogonalization Algorithms

A second dichotomy within the SPMR family lies in the nature of the bases with respect to which
the off-diagonal blocks GT

1 and G2 are bidiagonalized.
Before considering this distinction, let us recall the schema by which many other iterative meth-

ods – especially Krylov subspace methods – are derived. First, a matrix relation expressing the
∗In Section 3.1.1, we will consider techniques for circumstances in which nullspace bases are not explicitly available.

3

desired reduction of the system matrix is stated. This relation describes the reduction that would
be achieved if the iteration were to proceed until completion. Next, submatrices (typically rect-
angular) are defined so as to express the state of the iteration at an intermediate step. Finally,
recurrence relations for vector iterates are determined from these submatrix relations, which dictate
the updates performed in each iteration.

As an example, let us review the Full Orthogonalization Method (FOM), whose underlying
iteration is the Arnoldi iteration [6]. The Arnoldi iteration is derived from the matrix relation

V TAV = H,

where A ∈ Rn×n, H ∈ Rn×n is upper Hessenberg, and V ∈ Rn×n is orthogonal. Defining Vk as the
submatrix consisting of the first k columns of V and H̃k as the upper-left (k + 1)× k submatrix of
H, we obtain

AVk = Vk+1H̃k, V T
k Vk = I.

Labelling the columns of V and the entries of H in the usual manner, we determine therefrom that

hj+1, j vj+1 = Avj −
j∑

i=1

hijvi, hij = vTi Avj ,

for j = 1, 2, . . . , k.
The SPMR methods are more complex, as multiple blocks of K (for “-SC” methods) or KD (for

“-NS” methods) are simultaneously reduced. Nevertheless, their derivations conform to the same
schema. For simplicity, we first consider the methods in the “-SC” subfamily, which are governed by
the matrix relation [

W

Z

]T [
A GT

1

G2 0

][
U

V

]
=

[
J BT

C 0

]
, (5)

where J ∈ Rn×n is a diagonal matrix of signs (±1) and B,C ∈ Rm×n are lower bidiagonal. (The
reason J is taken to be a matrix of signs rather than the identity matrix is that we wish to have
U = W and V = Z when A is symmetric. The equation above therefore requires that J be congruent
to A, which is impossible to satisfy if J = I unless A is positive-definite, according to Sylvester’s
law of inertia. In this regard, the matrix J can “absorb the indefiniteness of A” [3].) Observe from
(5) that U and W are A-biconjugate up to signs (i.e., W TAU = J).

Notice that we have not yet imposed any requirements on the bases V and Z. It is here that the
aforementioned dichotomy arises: orthogonalization-based methods require that V and Z both be
orthogonal, whereas biorthogonalization-based methods require that V and Z be biorthogonal (i.e.,
ZTV = I).

For methods in the “-NS” subfamily, we simply replace K by KD in (5). This gives four different
algorithms for the reduction of the system matrix, summarized in the table below.

Reduction of K Reduction of KD

Orthogonalization SIMBA-SC SIMBA-NS
Biorthogonalization SIMBO-SC SIMBO-NS

Table 1: Simultaneous bidiagonalization algorithms for SPMR methods. (The “A” in SIMBA stands
for “A-biconjugacy”; the “O” in SIMBO stands for “biorthogonality”.)

We omit the statements of the submatrix and vector relations for the SIMBA/SIMBO algorithms,
which can be found in the original paper [3, pp. 5–7, 15–16].

4

2.3 Residual Minimization and Residual Quasi-minimization

Having described the various ways in which the system matrix can be reduced, it remains to ex-
plain how iterative approximations to x and y (or p, when the dual system is being solved) are
generated. It is common for iterative methods to determine successive iterates by solving a residual
minimization/quasi-minimization problem over an affine space, and for this minimization problem
to have a structure that is amenable to the development of recurrence relations for the iterates. An
archetype of this methodology is GMRES, whose iterates lie in a translated Krylov subspace and
are determined by solving a residual minimization problem (the “MRES” in “GMRES”), which turns
out to be a Hessenberg least squares problem [6].

In keeping with praxis, the SPMR methods solve minimization/quasi-minimization problems
over spaces spanned by the bases U and V . To state these problems, we define submatrices in
accordance with the schema described in Section 2.2. Imitating the notation of Saad [6], let Uk

denote the submatrix consisting of the first k columns of U (and likewise for V , W , and Z), and let
Bk denote the upper-left k × k submatrix and B̃k the upper-left (k + 1) × k submatrix of B (and
likewise for C and J). Finally, we define

Kk :=

[
Jk BT

k

C̃k 0

]
.

With this notation, the iterates are of the form xk = Ukx̄k and yk = Vkȳk (i.e., xk ∈ im(Uk)
and yk ∈ im(Vk)). Again, we begin by illustrating the “-SC” subfamily of methods, for which the
residual is [

0

g

]
−K

[
xk

yk

]
=

[
AUkJk

Zk+1

]([
0

δ1e1

]
−Kk

[
x̄k

ȳk

])
, (6)

where δ1 = ‖g‖, which can be derived from (5). The vectors x̄k and ȳk are chosen to solve the
residual quasi-minimization problem

min
x̄, ȳ

∥∥∥∥∥
[

0

δ1e1

]
−Kk

[
x̄

ȳ

]∥∥∥∥∥ . (7)

Observing that the upper block of the vector in (7) is −(Jkx̄+BT
k ȳ), we can equivalently solve

min
x̄
‖δ1e1 − C̃kx̄‖ (8)

for x̄k and recover ȳk by taking ȳk = −B−Tk Jkx̄k. With this approach, if r̄k := δ1e1 − C̃kx̄k is the
quasi-minimal residual of (8), then [

0

g

]
−K

[
xk

yk

]
=

[
0

Zk+1r̄k

]
.

Thus, if the method is orthogonalization-based, the norm of the quasi-minimal residual (i.e., ‖r̄k‖) is
in fact minimal, as the columns of Zk+1 are orthonormal! We therefore refer to this class of methods
as ‘true’ SPMR methods, while biorthogonalization-based methods are named “SPQMR” instead (in
SPQMR methods, the actual residual norm is ‖Vk+1r̄k‖, which need not be equal to ‖r̄k‖). We also
observe that in either case, the norm of the actual residual is equal to that of rk := g − G2xk, the
lower block of the vector in (6).

For the “-NS” subfamily of methods, we replace K by KD, g by −HT
1 f , and xk, yk by pk, qk

in (6) (as per (4)). However, there is a catch: it is not apparent that the dual residual rNS
k :=

5

−HT
1 f −H

T
1 Apk is in any way related to the original residual as defined by (4) – that is, to rk in

the equation [
f

0

]
−K

[
xk

yk

]
=

[
f − (Axk +GT

1 yk)

0

]
=:

[
rk

0

]
,

where xk = −pk and yk is the least-squares solution to GT
1 y = f − Axk (it can be shown that pk,

and hence xk, will lie in ker(G2); see also Section 2.1 [3, Thm. 1]). Estrin and Greif show in this case
that ‖rNS

k ‖ = |rk|H1H
T
1
, where | · |

H1H
T
1

is the seminorm |r|
H1H

T
1

:= (rT (H1H
T
1)r)1/2 [3, Thm. 5].

But if r ∈ ker(G1), then |r|
H1H

T
1

= 0 if and only if r = 0, since ker(HT
1) = ker(G1)⊥. In other

words, | · |
H1H

T
1
is a norm on ker(G1). Since the rk lie in ker(G1) by definition, rNS

k → 0 implies that

rk → 0, so ‖rNS
k ‖ is a consistent measure of convergence.

The following table (cf. Table 1) lists the four methods of the SPMR family that we have derived.

Schur complement method Nullspace method
Residual minimization SPMR-SC SPMR-NS

Residual quasi-minimization SPQMR-SC SPQMR-NS

Table 2: The SPMR family of methods.

3 Implementations of the SPMR Solvers

In our implementations of the SPMR solvers, we distinguish between three phases of computation:

1. Assembly of the saddle-point matrix

2. Iteration of one of the four methods in the SPMR family

(a) Iteration of the corresponding simultaneous bidiagonalization algorithm

(b) Update of the approximate solution

(c) Computation/estimation of the residual norm

3. Recovery of the results (e.g., x, y, residual norms/residual norm estimates)

The separation of the assembly and iteration phases allows multiple SPMR methods to be applied
(and/or for a single method to be invoked multiple times with different arguments) using the same
saddle-point matrix without redundancy in computation. While the recovery phase merely marks
the termination of the iteration, we find it convenient to regard it as a separate step, as it involves
the creation of a data structure to encapsulate the results of the iteration.

We begin by describing the Matlab implementation since it is conceptually simpler than the
Julia implementation but possesses the latter’s key elements.

3.1 Matlab Implementation

The following code excerpt, taken from grcar_sc.m in the SPMR-MATLAB toolbox (https://
github.com/nick-hu/SPMR-MATLAB), reproduces one of the numerical experiments conducted
by Estrin and Greif [3, p. 23].

6

https://github.com/nick-hu/SPMR-MATLAB
https://github.com/nick-hu/SPMR-MATLAB

1 n = 2000;
2 m = 1000;
3

4 A = gallery('grcar', n);
5 F = 100 * speye(m, m);
6 G1 = [F F];
7

8 [L1, U1, P1] = lu(A);
9 [L2, U2, P2] = lu(A');
10

11 f = transfunc_wrapper(@(x) U1 \ (L1 \ (P1 * x)), ...
12 @(x) U2 \ (L2 \ (P2 * x)));
13

14 K = spmr_sc_matrix(f, G1, G1, n, m);
15

16 g = ones(m, 1);
17

18 result = spmr_sc(K, g, 'tol', 1e-10, 'maxit', 2*m);

Code Excerpt 1: Usage of SPMR-SC in Matlab.

We will use this excerpt to explain the implementations of each of the three phases in turn.
(Note that on lines 8 and 9, the user may select any factorization they wish for the problem at hand;
it is not necessary to perform an LU factorization.)

3.1.1 Assembly of the Saddle-point Matrix

The functions spmr_sc_matrix and spmr_ns_matrix assemble structs corresponding to the
two types of saddle-point matrices described in Section 2.1 (namely, K and KD respectively). Their
prototypes are

spmr_sc_matrix(A, G1, G2, n, m)
spmr_ns_matrix(A, H1, H2, n, m, l)

where the parameters have the same meanings as in equations (2) and (4). The additional parameter
l of spmr_ns_matrix is the size of the nullspace bases H1 and H2, which is n−m when explicit
nullspace bases are used. However, as Estrin and Greif explain, it is also possible to use orthogonal
projectors onto ker(Gi) in place of the Hi when explicit bases are unavailable or unwanted (because
they are expensive to compute and/or dense) [3, pp. 12–13]. In this case, the size of the ‘nullspace
bases’ is effectively n, which is supplied as l to spmr_ns_matrix.

Although n and m could conceivably be inferred from the sizes of A, G1/H1, and G2/H2, we
allow function handles for matrix-vector products/linear system solves to be passed in place of any
of the matrices. Specifically, if f is a function handle given in place of G1, we require that f(x, 1)
return G1x and that f(x, 2) return GT

1 x, and likewise for H1, G2, and H2. If given in place of A,
we require that f(x, 1) return A−1x for spmr_sc_matrix but Ax for spmr_ns_matrix, and
likewise for f(x, 2) with AT (note that Schur complement methods solve systems with A, whereas
nullspace methods compute matrix-vector products with A). With all these dimensions provided,
it is straightforward to verify that the matrices are of the appropriate sizes and that the functions
return vectors of the appropriate lengths before the iteration commences.

In the Matlab implementation, spmr_sc_matrix and spmr_ns_matrix simply amalgamate
the provided arguments into a struct with fields identical to the parameters of the functions. We
will see later that the Julia analogues of these functions have more complicated behaviour since they
serve as constructors for saddle-point matrix objects.

7

The usage of spmr_sc_matrix is illustrated by line 14 of Code Excerpt 1, wherein G1 and G2
are both equal to the matrix defined on line 6 and the function handle created on line 11 is provided
in place of A. The helper function transfunc_wrapper is a higher-order function h defined such
that (h(f1, f2))(·, i) = fi for i ∈ {1, 2}.

3.1.2 Iteration of the SPMR Method

Once a saddle-point matrix has been created, an appropriate method of the SPMR family may be
applied using this matrix, given a right-hand side vector f or g. Naturally, there is a function for
each of the four SPMR methods in Table 2:

spmr_sc(K, g[, 'tol', tol][, 'maxit', maxit][, 'precond', M])
spqmr_sc(K, g[, 'tol', tol][, 'maxit', maxit][, 'precond', M])
spmr_ns(KD, f[, 'tol', tol][, 'maxit', maxit][, 'precond', M])
spqmr_ns(KD, f[, 'tol', tol][, 'maxit', maxit][, 'precond', M])

where we have demarcated optional parameters by brackets (as in extended Backus-Naur form). As
their names suggest, K is a struct assembled by spmr_sc_matrix and KD is a struct assembled by
spmr_ns_matrix (see Section 3.1.1). The syntax of an invocation of spmr_sc is shown in line 18
of Code Excerpt 1.

The optional parameter tol specifies a relative residual norm tolerance and maxit sets a thresh-
old on the maximum number of iterations performed. In addition, it is possible to incorporate a
right preconditioner P of the form [

In

M

]
in any of the methods for solving (2) or (4) [3, pp. 18–21]. IfM is symmetric positive definite (so
that its associated bilinear form defines an inner product), it suffices to alter SIMBA and SIMBO
such that V and Z areM−1-orthogonal andM−1-biorthogonal, respectively. This can be achieved
by furnishing the optional argument M as a matrix or function handle. Otherwise, we must essentially
replace K and KD by KP−1 and KDP

−1, respectively. For this, we can make use of the functionality
described in Section 3.1.1 (e.g., to provide a function handle in place of GT

1M
−1).

We also note that a cheap computation of the residual norm at each step is only possible when
using the ‘true’ SPMR methods; for SPQMR methods, we can only obtain an upper bound (cf.
residual norm estimation in GMRES vs. DQGMRES [6, pp. 178, 182]) [3, pp. 11, 17]. When
this upper bound falls below the specified tolerance, ‖rk‖ or ‖rNS

k ‖ is computed exactly (which
involves computing matrix-vector products). If this quantity is also below the specified tolerance,
the iteration is terminated with success; otherwise, it is resumed.

While the Matlab implementations of these methods are mostly straightforward translations
of the algorithms given by Estrin and Greif, it is worth mentioning that some structural redundan-
cies in the prototype implementations have been eliminated by method extraction. For instance,
conditional blocks that either compute K.G1 * x or K.G1(x, 1) depending on the type of K.G1
have been replaced by calls of the form mul(K.G1, x). Although the conditionals are still present
in the extracted methods, we will see in the Julia implementation that they can be dispensed with
altogether by using polymorphism.

3.1.3 Recovery of the Results

Upon termination, the functions of Section 3.1.2 return a struct with fields x, (y for Schur comple-
ment methods,) the iteration count iter, a vector resvec of relative residual norms or estimates
thereof, and a termination flag flag. (This struct is result in line 18 of Code Excerpt 1.) The

8

flag is an element of the enumerated type SpmrFlag that describes the circumstance in which
termination occurred and is one of:

• CONVERGED, indicating that the relative residual norm fell below the prescribed tolerance
(within the maximum number of iterations)

• MAXIT_EXCEEDED, indicating that the maximum number of iterations was performed (with-
out convergence being achieved)

• OTHER, indicating that some computed quantity became too small

3.2 Julia Implementation

In addition to our Matlab implementation, we implemented the SPMR family of methods in
Julia, an emerging programming language designed for high-performance numerical and scientific
computing [2]. While strongly influenced by Matlab, we stress that Julia is not merely an open-
source clone of the former. In particular, Julia possesses multiple dispatch and a sophisticated
type system with features such as parametric polymorphism. These features, combined with its
just-in-time compilation, allow it to rival the performance of statically-typed languages such as C
while retaining the clarity of high-level languages such as Python. Metaprogramming with Lisp-
style macros (operating at the level of abstract syntax trees) and code generation is also possible
in Julia. All the aforementioned features are central to our implementation and render it more
understandable, flexible, maintainable, and often more efficient than the Matlab version.

The following code excerpt is adapted from test/grcar_sc.jl in the Julia SPMR package
(https://github.com/nick-hu/SPMR) and is the Julia equivalent of Code Excerpt 1.

1 using LinearAlgebra, SparseArrays
2 using SPMR, LinearMaps
3

4 include("grcar.jl")
5

6 n, m = 2000, 1000
7

8 A = grcar(n)
9 F = sparse(100I, m, m)
10 G1 = [F F]
11

12 K = SpmrScMatrix(A, G1', G1)
13

14 g = ones(m)
15

16 result = spmr_sc(K, g, tol=1e-10, maxit=2m)

Code Excerpt 2: Usage of SPMR-SC in Julia.

The included file test/grcar.jl contains the function grcar, which reproduces the effect
of Matlab’s gallery('grcar', n). The SPMR package depends on and is interoperable with
the LinearMaps.jl package (https://github.com/Jutho/LinearMaps.jl), which allows Ju-
lia functions (for black-box matrix-vector products) to behave as linear maps (matrices).

As our implementation utilizes several advanced capabilities of Julia, we assume that the reader
is familiar with the language (whose documentation can be found at https://docs.julialang.
org/en/v1/). In particular, multiple dispatch, parametric polymorphism, and metaprogramming
are used extensively.

To exploit the functionality of the LinearMaps.jl package, we declare the following types:

9

https://github.com/nick-hu/SPMR
https://github.com/Jutho/LinearMaps.jl
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/

const FloatOperator = Union{AbstractMatrix{Float64}, LinearMap{Float64}}
const FloatInvOperator = Union{Factorization{Float64}, InvLinearMap{Float64},

UniformScaling}
const RealOperator = Union{AbstractMatrix{<:Real}, LinearMap{<:Real}}
const RealInvOperator = Union{Factorization{<:Real}, InvLinearMap{<:Real},

UniformScaling}

where InvLinearMap is a parametric type representing the inverse of a linear map. Internally,
InvLinearMap is simply

struct InvLinearMap{T}
map::LinearMap{T}

end

and left-divisions by an InvLinearMap, A, are interpreted as left-multiplications by A.map. In
summary, types that end in “Operator” act by left-multiplication, whereas types that end in
“InvOperator” act by left-division.

3.2.1 Assembly of the Saddle-point Matrix

As in the Matlab implementation, the Julia implementation has two types of structures for repre-
senting the two types of saddle-point matrices. Internally, the major differences are that the “-SC”
matrix structs store factorizations of A and AT (when possible) and that size information no longer
needs to be stored separately as this is specified at instantiation for LinearMaps. In Julia, these
types of structures are indeed types in the strict sense of the word, and are declared as follows:

abstract type SpmrMatrix end

struct SpmrScMatrix{T<:FloatInvOperator, U<:FloatInvOperator,
V<:FloatOperator, W<:FloatOperator} <: SpmrMatrix

A::T

AT::U

G1
T::V

G2::W

[Inner constructor omitted]
end

struct SpmrNsMatrix{T<:FloatOperator,
U<:FloatOperator, V<:FloatOperator} <: SpmrMatrix

A::T
H1::U
H2::V

m::Int

[Inner constructor omitted]
end

Note that m must still be stored in SpmrNsMatrix, as A, H1, and H2 could all be n × n (see
Section 3.1.1).

There are multiple (outer) constructors for each of these types, and their delegation relationships
are best understood by considering the diagrams below (the names of some types have been replaced
by their acronyms for brevity).

The inner constructors are responsible for enforcing type invariants, such as the compatibility of
the block sizes. Observe that on line 12 of Code Excerpt 2, constructor #4 in Fig. 1 is invoked.

10

1 SSM(A::T, AT::U, G1
T::V, G2::W) where {T<:FIO, U<:FIO, V<:FO, W<:FO}

2 SSM(A::T, G1
T::V, G2::W) where {T<:ILM{Float64}, V<:RO, W<:RO}

3 SSM(A::T, G1
T::V, G2::W) where {T<:AM{Float64}, V<:FO, W<:FO}

4 SSM(A::T, G1
T::V, G2::W) where {T<:AM{<:Real}, V<:RO, W<:RO}

5 SSM(K::AM{<:Real}, n::Int)

5 4 3 1 inner constructor

2

partition K convert to Float64 factorize A and A
T

create InvLinearMap for A
−T

Figure 1: Delegation diagram for SpmrScMatrix outer constructors.

1 SNM(A::T, H1::U, H2::V, m::Int) where {T<:FO, U<:FO, V<:FO}
2 SNM(A::T, H1::U, H2::V, m::Int) where {T<:RO, U<:RO, V<:RO}

2 1 inner constructorconvert to Float64

Figure 2: Delegation diagram for SpmrNsMatrix outer constructors.

At the factorization step in Fig. 1, a convenient factorization is computed according to the
structure and properties of the matrix. For instance, if A is positive-definite, a Cholesky factorization
is performed; if A is sparse and symmetric, an LDLT factorization is performed; and so on. This is
done by Julia’s built-in factorize function, which is a black-box routine that returns an object of
type Factorization. (In particular, a Factorization{Float64} is a FloatInvOperator,
so the constructor call is subsequently dispatched to constructor #1 in Fig. 1.)

3.2.2 Iteration of the SPMR Method

Simultaneous bidiagonalization. In our implementation of the SPMR iterations, we make use
of another sophisticated abstraction afforded by Julia: iteration abstraction. Specifically, the bidiag-
onalization algorithms (SIMBA/SIMBO) are encapsulated by iterator objects, and the generation
of vectors by these algorithms is conceptually regarded as ‘traversal’ of a saddle-point matrix. Thus,
SIMBA-SC and SIMBO-SC are two ways of ‘traversing’ an SpmrScMatrix, while SIMBA-NS and
SIMBO-NS are two ways of ‘traversing’ an SpmrNsMatrix. Although Julia does not possess in-
terfaces proper, it is possible to use its generic iterate function to implement a simplified variant
of the well-known Iterator design pattern (in fact, this variant is precisely the ‘minimal interface’
variant proposed by Gamma et al.) [5].

The iterator types for “-SC” matrices are termed SimbaScIterator and SimboScIterator,
and similarly for “-NS” matrices. The objects returned by the iterators, which we call “iterates”, are
of type SpmrScIterate or SpmrNsIterate according as the iterator is an “-SC” iterator or an
“-NS” iterator. The iterates themselves are structs containing both scalars and vectors generated
by the biorthogonalization algorithms. It is important to note that the iterates do not contain any
state information, as this is entirely encapsulated by the iterator. Internally, the iterator maintains
a reference to the saddle-point matrix and to the preconditioner being used (if there is one), and
stores the current iterate (from which the next is computed) as well as the initial iterate so that the
iteration may be restarted.

Concretely speaking, if K is an SpmrScMatrix as in line 12 of Code Excerpt 2, then the
corresponding SpmrScIterator is constructed by a call of the form

11

simba_sc(K, b, c, precond=P)

within the function spmr_sc, which would then iterate over the iterator SSI as
for SI in SSI

[Do something with SI.u, SI.v, SI.w, SI.z, etc.]
end

Yet another abstraction presents itself, given the structural similarities between SIMBA-SC and
SIMBO-SC (and between SIMBA-NS and SIMBO-NS): the metaprogrammatic generation of the
code for the iterators themselves! For instance, the code that generates the iterator types reads

mutable struct $iterator_type
K::$matrix_type
SI::$iterate_type

SI0::$iterate_type # Remember SI0 so that we can reiterate

M::FloatInvOperator # Preconditioner
end

We also use macros to abstract the operations common to both “-SC” and “-NS” methods. As an
example, consider the A-biconjugacy between U and W described in Section 2.2, which is present
in both SIMBA and SIMBO. This property is imposed by the following sequence of operations:

ξk+1 ← ûk+1 · wk+1

αk+1 ← |ξk+1|
1/2 γk+1 ← αk+1

uk+1 ← sign(ξk+1)uk+1/αk+1 wk+1 ← sign(ξk+1)wk+1/γk+1

(the meanings of α, γ, ξ, and û are irrelevant to the present discussion). The macro for these
operations is

macro conjugate!(u, w, α, γ, ξ, û, n)
return quote

$ξ = $û · $w
$α = $γ = sqrt(abs($ξ))

@scal_signinv!($u, $α, $ξ, $n)
@scal_signinv!($w, $γ, $ξ, $n)

end |> esc
end

which in turn depends on the macro scal_signinv!, defined by
macro scal_signinv!(v, α, ξ, n)

return quote
BLAS.scal!($n, flipsign(inv($α), $ξ), $v, 1)

end |> esc
end

This second macro performs the operation v ← sign(ξ)v/α for v ∈ Rn.
Particularities of the bidiagonalization algorithms (e.g., initialization steps) are dealt with by

quoted expression interpolation. These quoted expressions are stored in a global constant dictionary.
Returning to the point raised in Section 3.1.2 about type-based conditionals – which are gen-

erally viewed as poor design but are inevitable in Matlab – we see that such a construct is
unneeded in the Julia implementation owing to multiple dispatch. To wit, the Julia equivalent
of the call mul(K.G1, x) dispatches on the type of K.G1, which is by definition a subtype of
FloatOperator, i.e., one of AbstractMatrix{Float64} or LinearMap{Float64}.

12

The main iteration. The implementation of the rest of the SPMR iteration likewise exploits the
homology of the SPMR family. In particular, we define macros for both the initialization and the
updating of x (p), y, and the (implicit) QR decomposition used to solve (8). As an illustration,
Code Excerpt 3 alone generates both the SPMR-SC and SPQMR-SC methods.

1 function $func(K::SpmrScMatrix, g::AbstractVector{<:Real};
2 tol::Float64=1e-6, maxit::Int=10, precond::RealInvOperator=I)
3 n, m = block_sizes(K)
4

5 SSI, SI0 = $bidiag_func(K, g, g, precond=precond)
6

7 @init_qr(SI0)
8 @init_x!(x, SI0, n)
9 @init_y!(y, SI0, m)
10

11 if abs(SI0.ξ) < eps()
12 return SpmrScResult(x, y, OTHER, 0, Float64[], precond)
13 end
14

15 resvec = Vector{Float64}(undef, min(m, maxit))
16

17 $(iteration_quotes[func][:init])
18

19 for (k, SI) in enumerate(SSI)
20 if k > maxit
21 return SpmrScResult(x, y, MAXIT_EXCEEDED, maxit, resvec[1:maxit],
22 precond)
23 elseif abs(SI.ξ) < eps()
24 return SpmrScResult(x, y, OTHER, k-1, resvec[1:k-1], precond)
25 end
26

27 @update_qr!(Ω, SI)
28 @update_x!(x, SI, n)
29 @update_y!(y, SI, m)
30

31 $(iteration_quotes[func][:compute_res])
32 end
33

34 return SpmrScResult(x, y, MAXIT_EXCEEDED, m, resvec, precond)
35 end

Code Excerpt 3: Generation of the SPMR-SC and SPQMR-SC methods in Julia.

3.2.3 Recovery of the Results

From Code Excerpt 3, we also see how the result structs are constructed. In this respect, there is
no significant difference between the Matlab and Julia implementations, save for the fact that the
SpmrScResult constructor performs the final M-solve required when a preconditioner is being
used (see Section 3.1.2).

4 Extensions and Concluding Remarks

Our implementations of the SPMR methods are efficient and extensible and adhere to core principles
of software design. Several numerical experiments conducted by Estrin and Greif were successfully
replicated and appear as examples accompanying the Matlab and Julia code (in fact, Code Excerpts

13

1 and 2 perform one of these experiments) [3, pp. 23–24, 29]. Typically, both the Matlab and
Julia code ran 60–90 times faster than the prototype code, although the improvement was slightly
less significant for Julia when LinearMaps were used. Cursory profiling of the code in this case
revealed that a substantial amount of time was expended on type inference, suggesting that a
native reimplementation of the functionality of LinearMap in SPMR may remediate the latter’s
performance.

Comprehensive user-friendly documentation was also produced for both implementations, which
allows the packages to be easily extended. As an example, we implemented an inner-outer iterative
method based on SPMR-SC and GMRES, which we called SPGMR, using the SPMR-MATLAB
package. The essence of SPGMR (Saddle-Point Generalized Minimum Residual) is the application
of GMRES to (1) with a preconditioner of the form

P =

[
G GT

1

G2 0

]
,

where G is an approximation to A and the P-solves are performed using SPMR-SC (i.e., inside of the
GMRES iteration). We may thereby apply SPMR-SC to a saddle-point matrix wherein the leading
block is more efficiently invertible than A itself. For instance, G could be a lower triangular part or
an incomplete factorization of A.

The code for SPGMR (in Matlab) is simply
P = spmr_sc_matrix(G_func, G1, G2, n, m);
M_func = @(x) spgmr_inner(P, x, maxit);

[x, conv_flag, relres, iter, resvec] = gmres(K, [f; g], [], 1e-10, n+m, M_func);

where G_func is a function handle for G−1 and spgmr_inner is a function applying SPMR-
SC with an arbitrary right-hand side x using the reduction described in Section 2.1. Specifically,
spgmr_inner is

function sol = spgmr_inner(K, rhs, maxit)
x_hat = ldiv(K.A, rhs(1:K.n));
g = rhs(K.n + (1:K.m)) - K.G2 * x_hat;

% The tolerance must be scaled as it is *relative*
tol = norm(rhs) / norm(g) * 1e-10;

result = spmr_sc(K, g, 'tol', tol, 'maxit', maxit);
sol = [result.x + x_hat; result.y];

end

Further investigation is required to determine the behaviour of SPGMR, which we may perform in
the future.

The Matlab and Julia packages for the SPMR methods may be found at https://github.
com/nick-hu/SPMR-MATLAB and https://github.com/nick-hu/SPMR, respectively.

14

https://github.com/nick-hu/SPMR-MATLAB
https://github.com/nick-hu/SPMR-MATLAB
https://github.com/nick-hu/SPMR

References

[1] M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle point problems”. In: Acta
Numerica 14 (2005), pp. 1–137.

[2] J. Bezanson et al. “Julia: A Fresh Approach to Numerical Computing”. In: SIAM Review 59.1
(2017), pp. 65–98.

[3] R. Estrin and C. Greif. “SPMR: A Family of Saddle-Point Minimum Residual Solvers”. In:
SIAM Journal on Scientific Computing 40.3 (2018), A1884–A1914.

[4] R. W. Freund and N. M. Nachtigal. “QMR: a quasi-minimal residual method for non-Hermitian
linear systems”. In: Numerische Mathematik 60.1 (1991), pp. 315–339.

[5] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[6] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and Applied
Mathematics, 2003.

[7] M. Saunders, H. Simon, and E. Yip. “Two Conjugate-Gradient-Type Methods for Unsymmetric
Linear Equations”. In: SIAM Journal on Numerical Analysis 25.4 (1988), pp. 927–940.

15

	Introduction
	The SPMR Family of Methods
	Schur Complement and Nullspace Methods
	Orthogonalization and Biorthogonalization Algorithms
	Residual Minimization and Residual Quasi-minimization

	Implementations of the SPMR Solvers
	Matlab Implementation
	Assembly of the Saddle-point Matrix
	Iteration of the SPMR Method
	Recovery of the Results

	Julia Implementation
	Assembly of the Saddle-point Matrix
	Iteration of the SPMR Method
	Recovery of the Results

	Extensions and Concluding Remarks

