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Ordinary differential equations (ODEs)  

Scalar ODEs  

Ordinary differential equation (ODE): equation of the form , where  is a
function of 

Order of an ODE: order of the highest derivative appearing in the equation

Autonomous ODE:  does not (explicitly) depend on 

Linear ODE:  is a linear combination of the derivatives of , plus a function of  called the source
term/forcing function; that is, an equation of the form

Homogeneous linear ODE:  (in which case  is a trivial solution)

Nonhomogeneous linear ODE: 

The general solution to a linear ODE is , where  is the general solution of the homogeneous

equation (the complementary solution) and  is a solution of the nonhomogeneous equation (a
particular solution).

Superposition principle: a linear combination of solutions to a homogeneous linear ODE is also a solution

to the ODE 1

A basis for the space of solutions to a homogeneous linear ODE is called a fundamental system of
solutions.

First-order scalar ODEs  

Picard-Lindelöf theorem

Given the initial value problem , suppose that  is continuous in  and Lipschitz
continuous in  (uniformly in ). Then there exists a unique solution to the IVP on  for
some .

Separable equations

To solve a separable equation :

Integrate:

First-order linear ODEs

To solve a first-order linear ODE of the form :

Multiply both sides by an integrating factor , which yields 

Integrate:

Bernoulli equations

To solve a Bernoulli equation :
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Substitute , which yields the first-order linear equation 

Given a first-order autonomous equation , the points on the -axis where  are called
critical points. If  is a critical point, the constant solution  is called an equilibrium solution.

The phase line of such an equation consists of the -axis along with arrows indicating the sign of 
between each of the critical points – ▲ if ; ▼ if . If both arrows point toward a critical point, it
is stable; if both point away, it is unstable; otherwise, it is semi-stable (sometimes just called unstable).

A general first-order scalar ODE  may be visualized using a slope field, a plot of the -plane
with small line segments of slope  at each point .

Second-order scalar ODEs  

We will consider only linear second-order ODEs.

Existence and uniqueness of solutions to second-order linear ODEs

Given the equation , suppose that  are continuous on some interval .
Then for any fixed  and , there exists a unique solution to the ODE on  satisfying 

.

Superposition of solutions to second-order linear homogeneous ODEs

Given the equation , suppose that  are continuous. Then the solution space
of the ODE is two-dimensional; viz., if  are linearly independent solutions to the ODE, the general
solution is .

Now we consider the constant-coefficient second-order linear homogeneous ODE ,
where . Assuming the solution is of the form  (with  possibly non-real), we obtain the
characteristic equation .

Second-order linear homogeneous ODEs with constant coefficients

To solve an ODE of the form :

Compute the roots  of its characteristic equation

If  are real and distinct ( ), the general solution is  2

If  are real and equal ( ), the general solution is 

If  are complex ( ) with , the general solution is 

Reduction of order of a second-order linear ODE

Given the equation :

Let  be a solution to the homogeneous equation 

Substitute the ansatz , which yields a first-order linear ODE in 

Solving for  yields a second, linearly independent solution to the second-order ODE

In particular, reduction of order applied to  in the case  with 
 yields .

The (translational mechanical) harmonic oscillator is modelled by the constant-coefficient second-order
linear ODE
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Mass-spring system Series RLC circuit Pendulum

Position Charge Angle 

Mass Inductance Length 

Damping coefficient Resistance —

Spring constant Inverse capacitance Gravitational acceleration 

Driving force EMF —

where  is the position of the object as a function of time,  is the mass of the object,  is the
damping coefficient,  is the spring constant, and  is a driving/forcing function.

Several physical systems are harmonic oscillators, as exemplified by the following table.

Damped; undamped harmonic oscillator: ; 

Forced; unforced/free harmonic oscillator: ; 

Undamped/natural angular frequency:  (i.e., the angular frequency of the oscillator if it

were undamped) 3

Damping ratio: 

We first consider the behaviour of unforced oscillators.

Behaviour of an unforced undamped harmonic oscillator

If  (i.e., ), the oscillator is undamped. The solution

oscillates with amplitude , angular frequency , and phase shift .

If the oscillator is damped, we distinguish three cases, depending as above on the sign of the
discriminant of the characteristic polynomial.

Behaviour of an unforced damped harmonic oscillator

If  (i.e., ), the oscillator is overdamped

The solution  decays as  and does not oscillate

Its decay constants are 

If  (i.e., ), the oscillator is critically damped

The solution  decays as  and does not oscillate

Its decay constant is 

If  (i.e., ), the oscillator is underdamped

The solution  decays as  while oscillating 4

Its decay constant is  and the angular pseudo-frequency of its oscillations is 

Now suppose the oscillator is subject to sinusoidal forcing .

Behaviour of a forced undamped harmonic oscillator



If , there are beats

The particular solution is 

This combines with  to produce beats; the closer  is to , the greater the amplitude of the

beats

If , there is resonance

The particular solution is 

This dominates  as , producing increasingly large oscillations at the resonant

frequency

Behaviour of a forced damped harmonic oscillator

The particular solution  is a sinusoid with amplitude

and angular frequency , and is called the steady-state solution. The complementary solution decays
exponentially and is therefore called the transient solution.

The amplitude of  is maximized at the practical resonance frequency , provided that 

.

If , there is no maximum (for ), but the amplitude increases as .

Higher-order scalar ODEs  

th-order linear homogeneous ODEs with constant coefficients

To solve an ODE of the form :

Compute the roots of its characteristic polynomial 

Each real root  of multiplicity  contributes  to the general solution

Each pair of complex roots  of (individual) multiplicity  contributes 

 to the general solution

There are two commonly used methods for finding a particular solution to a nonhomogeneous linear ODE
with source term .

The method of undetermined coefficients

Suppose that  for some polynomial  of degree  and some . Given the equation 

:

Let  be the multiplicity of  as a root of its characteristic polynomial

Substitute the ansatz  and match coefficients to determine the 

If , the ansatz 

can be used instead (which is useful when  or , for

example)

If  is a sum of such terms, apply the principle of superposition; i.e., solve the equation with each
term as the source term separately, then add the solutions
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To verify that a solution set of an ODE is linearly independent, it is occasionally useful to compute the
Wronskian determinant.

Wronskian (determinant) of :

Linear dependence and the Wronskian

Given a set of -times differentiable functions, if the functions are linearly dependent on an

interval, then their Wronskian vanishes identically thereon. 5

Of course, the contrapositive of this result is used in practice.

The method of variation of parameters

Given the equation :

Let  be a fundamental system of solutions to the homogeneous equation

Substitute the ansatz  and impose the constraints  for 

Solve the resulting linear system

Note that the matrix is the Wronskian matrix of the fundamental system, so by Cramer’s rule, 

, where  denotes the

Wronskian determinant with the th column of the matrix replaced by the right-hand side

The Laplace transform  

Laplace transform of :

If  and  is of exponential type (that is,  as  for some ), then 

 is defined for all 

Moreover, 

The Laplace transform is linear

The Laplace transform is injective in the sense that if , then  a.e. (Lerch’s theorem)

In particular, if  and  are continuous, then  for all 

The variables  and  are typically thought of as “time” and “frequency”, respectively

Inverse Laplace transform of :
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Function Laplace transform

where  is such that the contour of integration (i.e., the line ) lies in the region of
convergence of 

The formula above is called Mellin’s integral formula and is derived from the Fourier inversion

theorem

In practice, the inverse Laplace transform is computed by inspection (using tables of known Laplace

transforms; see below)

Dirac delta “function”: Borel measure defined by ;  is interpreted as 

Heaviside step function:  (sometimes denoted  or )

Unit step functions: 

We observe that , which is useful for expressing piecewise functions.

When applicable, the Laplace transform can be used to solve ODEs by transforming both sides of the
equation, solving for the transform of the independent variable, and computing its inverse transform.

In the tables below, we assume where necessary that  for all . Thus, for instance, 
represents  and  represents .

These “elementary” transforms can be combined with the general properties in the table below.

For example,  by the time shift property.

Initial value theorem



If  is of exponential type and  exists (and is finite), then 
.

Final value theorem

If  is bounded and  exists (and is finite), then .

If  is a linear differential operator with constant coefficients (that is, a polynomial differential
operator), then the solution to  is called the impulse response of the system.

Linear ODEs with constant coefficients and the impulse response

If  is a linear differential operator and  is the impulse response of , then the solution to 
 is .

(To see this, we can convolve both sides of the equation  with  and use the fact that 
 and . We assume that  is sufficiently smooth to justify the manipulation

on the left-hand side.)

Power series methods  

Consider the second-order linear homogeneous ODE

where  are polynomials. 6

Ordinary; singular point : ;  7

Regular singular point :  is a singular point but  and  tend to

finite limits as  8

At an ordinary point , we can substitute the ansatz  and derive a recurrence
relation for the coefficients .

At a regular singular point, we substitute the ansatz . By equating the trailing
coefficient (usually that of ) of the resulting series to zero, we obtain the indicial equation.

Method of Frobenius

Suppose that  is a regular singular point of  and that  are the roots of
the indicial equation. Then the ODE has two linearly independent solutions  as given below.

If , then

If , then

If , then

If  with , we can take  and  to obtain linearly independent real solutions.
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Vector ODEs  

A vector ODE is simply an equation of the form , where  is a function of .
Most definitions and properties given in the section on Scalar ODEs generalize to vector ODEs in the
obvious manner.

We note that a linear vector ODE takes the form

where the  are matrix-valued functions and the source term  is vector-valued.

When the (vector) functions of a fundamental system of solutions to a homogeneous linear vector ODE
are concatenated horizontally, the resulting matrix is called a fundamental matrix (solution).

The analogue of the phase line for first-order autonomous vector ODEs  is the direction/vector
field. A plot of the vector field  is made in phase space (i.e., the domain of ), in contradistinction to
slope fields, which are plotted in solution space. Solution curves (also called trajectories) parametrized
by  may also be drawn in phase space, even for non-autonomous ODEs. Such curves remain tangent to
the vector field. A plot of several trajectories in phase space is called a phase portrait.

Vector ODEs are useful for expressing (systems of) scalar ODEs. An th-order (scalar) ODE 

 can equivalently be viewed as a system of  1st-order ODEs

where  for . Similarly, a system of  ODEs of order  (with  dependent
variables) can be converted to a system of  ODEs of order 1 (with  dependent variables).

We will therefore restrict our attention to systems of 1st-order ODEs, which can themselves be

regarded as individual 1st-order vector ODEs. In the example above, we can define 

and , where  denotes the th component of .

Linear vector ODEs  

A first-order linear vector ODE (which we shall refer to interchangeably as a “linear system of ODEs”)
can be written in the form  (cf. first-order linear scalar ODEs). We will primarily be
interested in an even more specific type of first-order linear vector ODEs: those with constant
coefficients (i.e.,  is constant).

As with second-order linear scalar ODEs, we begin with the homogeneous case.

First-order linear homogeneous vector ODEs with constant coefficients

The general solution of  is , where . In other words,  is a
fundamental matrix solution.

(See Appendix B for the definition of  and further remarks.)

Corollary:

If  is a fundamental matrix solution to , then . 9

We note that  is an autonomous system whose sole critical point is the origin.
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Eigenvalues of Behaviour Stability

Real and positive (Nodal) source Unstable

Real and negative (Nodal) sink A. stable

Real and of opposite signs Saddle point Unstable

Purely imaginary Centre M. stable

Complex with positive real parts Spiral source Unstable

Complex with negative real parts Spiral sink A. stable

Eigenvalues of Behaviour Stability

Real, positive, equal, and nondefective Proper nodal source Unstable

Real, positive, equal, and defective Improper nodal source Unstable

Real, negative, equal, and nondefective Proper nodal sink A. stable

Real, negative, equal, and defective Improper nodal sink A. stable

In general, if  is an isolated critical point of a first-order autonomous system (not necessarily linear),
we can classify the critical point according to the behaviour of trajectories near it. We can also describe
the stability of the point itself as follows.

Stable critical point: given a distance  and any initial condition within a possibly smaller distance
from , the trajectory of the system therefrom will never travel further than  from 

Asymptotically stable critical point:  is stable and moreover every trajectory beginning sufficiently
close to  converges to it

Unstable critical point:  is not stable

A stable critical point that is not asymptotically so is sometimes called marginally/neutrally stable.

When the system is two-dimensional and  is invertible 10  and has distinct eigenvalues, the signs of the
eigenvalues of  determine the behaviour near and stability of the origin:

(The “centre” is so called because trajectories are ellipses centred at the origin.)

If  has a repeated eigenvalue, we further distinguish between proper and improper nodes according as

the eigenvalue is nondefective or defective: 11

We now consider the general (i.e., non-homogeneous) case (cf. First-order scalar ODEs).

First-order linear vector ODEs with constant coefficients

To solve a first-order linear vector ODE of the form :

Multiply both sides by the integrating factor , which yields 

Integrate:

However, the integrating factor method is not applicable when  is a function of , since in general 
 as matrix multiplication is noncommutative.

(For constant-coefficient linear systems, the method of undetermined coefficients may also be used,
where the ‘coefficients’ are vectors. One difference is that ansatz terms augmented by powers of  must
be included in addition to, rather than in place of other terms. For instance, if  is part of the
complementary solution, then both  and  must be included in the ansatz. In general, this method
is unwieldy for vector ODEs.)



To handle variable-coefficient systems, we can use variation of parameters:

First-order linear vector ODEs with variable coefficients

To solve a first-order linear vector ODE of the form :

Let  be a fundamental matrix solution to the homogeneous equation

Substitute the ansatz , which yields 

Integrate:

(Note that this reduces to the integrating factor method when  and .)

When  is diagonalizable, we can solve first- and second-order linear vector ODEs of the form 
 by exploiting the eigendecomposition of .

Linear vector ODEs with constant coefficients

To solve a first- or second-order linear vector ODE of the form , where  is
diagonalizable:

Let  be the eigenpairs of 

Write  and 

Solve for the  (in the linear system )

Substitute these decompositions into the equation and equate the coefficients of the
eigenvectors, which yields  decoupled first- or second-order linear scalar ODEs

Solve the scalar ODEs using the methods described in First-order scalar ODEs or Second-

order scalar ODEs

Nonlinear vector ODEs  

Suppose that  is an isolated critical point of the first-order autonomous vector ODE  (i.e., 
). By the Taylor expansion of  about , we have

In other words, near , the nonlinear ODE behaves like the constant-coefficient linear ODE 
 – its linearization at  – provided that the linearized system itself has an isolated critical

point (see Linear vector ODEs). In this case, the nonlinear ODE is called almost linear at .

However, we note that a centre of the linearized system tends to correspond to a spiral point in the
nonlinear ODE, since it is unlikely that the real parts of the eigenvalues of  all vanish in a whole
neighbourhood of . (Similarly, a node arising from a repeated real eigenvalue could also correspond to
a spiral point.)

Conservative equation: equation of the form 

A conservative equation can be written as the first-order autonomous vector ODE
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where .

By integrating both sides of the scalar equation with respect to , we find that

since . Hence the quantity  is conserved for any solution, which

can be used to find trajectories in phase (i.e., ) space. 12

The critical points are clearly the points on the -axis where . Since

a critical point is almost linear when . The eigenvalues of  at such a point are , so

the point is a saddle point if  and a centre if . 13  14



Boundary conditions Eigenfunctions Eigenvalues

Dirichlet on 

Neumann on 

Dirichlet-Neumann on 

Neumann-Dirichlet on 

Periodic on 

Partial differential equations (PDEs)  

Separation of variables  

Boundary-value problems  

Let  be the linear operator given by . We will take  to

be some subspace of  of functions satisfying certain boundary conditions (BCs). The three main
types are:

Dirichlet boundary conditions: 

Neumann boundary conditions: 

Periodic boundary conditions: 

Dirichlet and Neumann boundary conditions can also be mixed; e.g.,  are “Neumann-
Dirichlet” boundary conditions.

All such conditions ensure that  is a symmetric operator (by integrating by parts, we see that  is
symmetric if and only if  for all ).

The eigenvectors of  are the nontrivial solutions to the boundary value problem (BVP) ,
where  satisfies one of the boundary conditions above. In this context, they are called eigenfunctions.
As  is symmetric, its eigenvalues are real, and eigenfunctions of distinct eigenvalues are orthogonal.

Fredholm alternative

For any given , either:

 is an eigenvalue of 

 has a unique solution for every 

Trigonometric series  

Fourier series of :

where
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and the inner product is 

Periodic extension of : the function  given by  for 

Convergence of Fourier series

If the periodic extension  of  is piecewise smooth, then the Fourier series of  converges pointwise to 
 for every .

Differentiation and antidifferentiation of Fourier series

Suppose that the Fourier series of  is piecewise smooth.

If  is continuous and  is piecewise smooth, then the Fourier series of  may be computed by
differentiating that of  term-wise.

Similarly, an antiderivative of  may be computed by antidifferentiating the Fourier series of  term-
wise. (N.B.: In general, the resulting series will not be a Fourier series.)

Decay of Fourier series coefficients

If , then  as .

Parseval’s identity

Even extension of : the function  given by 

Odd extension of : the function  given by 

The periodic extensions of  and  are called the even and odd periodic extensions of ,
respectively.

Fourier cosine series of : the Fourier series of its even extension, viz.,

Fourier sine series of : the Fourier series of its odd extension, viz.,



Thus, by definition, the Fourier series of an even (resp., odd) function coincides with its Fourier cosine
(resp., sine) series. As above, if the even (resp., odd) periodic extension of  is piecewise smooth, then the
Fourier cosine (resp., sine) series of  converges pointwise a.e. to  (resp., ).

To solve a BVP of the form  (where  is not an eigenvalue of the homogeneous problem),
we can expand  and  as Fourier sine, Fourier cosine, or Fourier series according as the BCs are
Dirichlet, Neumann, or periodic. We then equate coefficients and solve for those of  as with power
series.

Fourier series are also effective in solving periodically forced harmonic oscillator equations. If necessary,
resonant terms in the Fourier series are multiplied by .

Second-order linear PDEs  

Every second-order linear PDE in two independent variables  can be written in the form 
, where  are functions of  and .

Elliptic PDE: 

Describes an ‘equilibrium state’

Obeys a ‘maximum principle’; smooths out singularities

Ex.: Laplace’s equation , Poisson’s equation 

Parabolic PDE: 

Describes ‘diffusion’

Obeys a ‘maximum principle’; smooths out singularities

Ex.: the heat equation 

Hyperbolic PDE: 

Describes ‘wave propagation’

Ex.: the wave equation 

The one-dimensional heat equation

To solve the PDE  with boundary conditions  and initial condition 
:

Substitute the ansatz , which yields 

Solve the BVP  with  to obtain eigenfunctions  with eigenvalues 

Solve the ODEs , which yield 

Write , where 

Impose  and match the coefficients with those of the appropriate trigonometric series for 

The technique of writing  as a product of functions in each independent variable is called separation of
variables.

The one-dimensional inhomogeneous heat equation

To solve the PDE  with boundary conditions  and initial condition 
:

Write , where  and  are the steady-state and transient parts of ,

respectively

Solve  with boundary conditions depending on 

Solve  with boundary conditions depending on  and initial condition 
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For instance, if  is , then  and .

The one-dimensional wave equation

To solve the PDE  with boundary conditions  and initial conditions 
:

Write 

Solve  with side conditions  by separation of variables, where 

 is 

Solve  with side conditions  by separation of variables, where 

 is 

Laplace’s equation in two dimensions

To solve the PDE  on a rectangle with boundary conditions:

Write , where the subscripts denote the

‘north’, ‘east’, ‘west’, and ‘south’ sides of the rectangle

For each side function , solve  by separation of variables with the boundary

conditions for all other sides set to zero

Note: it is convenient to use hyperbolic functions in the second step.

A similar method can be used to solve Laplace’s equation in a semi-infinite strip; however, exponential
functions should then be used instead of hyperbolic functions. In this case, it is also assumed that the
solution is bounded in the strip.

Separation of variables is also applicable to Laplace’s equation in polar coordinates, 
. In this context, a second-order Cauchy-Euler equation arises (for the radial

problem), whose solutions are recorded below. Again, we assume that the solution is bounded on its
domain.

The second-order Cauchy-Euler equation

To solve an ODE of the form :

Compute the roots  of its indicial equation 

If  are real and distinct, the general solution is 

If  are real and equal, the general solution is 

If  are complex with , the general solution is 

Integral transform methods  

The heat equation  on the line  with initial condition  can
be solved using the Fourier transform.

Taking the Fourier transform in  of the equation and initial condition, we obtain  for 

 and  for . This is just a first-order linear ODE in  with solution 

. Taking the inverse transform then yields .

The function
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is called the fundamental solution of the 1D heat equation (or the 1D heat kernel). Thus, the solution
formula for the 1D heat equation is

Eigenvalue problems  

Sturm-Liouville theory  

Regular Sturm-Liouville problem: BVP of the form

where

(The last condition simply ensures that the  are not both zero, and likewise for the .)

Solutions of regular Sturm-Liouville problems

Every regular Sturm-Liouville problem has a strictly increasing sequence  of real eigenvalues tending
to infinity. Moreover, each  is simple and its eigenspace is spanned by an eigenfunction  with exactly 

 zeroes in .

In addition, if  on , , and , then the eigenvalues are nonnegative.

Any second-order eigenvalue problem of the form

can be converted to Sturm-Liouville form by multiplying both sides by the integrating factor 
. This yields , , and .

The underlying linear differential operator of an SLP is the operator  defined by .

As with the second derivative operator (defined in Boundary-value problems),  is symmetric with

respect to the weighted  inner product  for functions satisfying the

boundary conditions of the SLP (indeed, the former is a special case of  with , , and ).
Likewise, we have:

Fredholm alternative

For any given , either:

 is an eigenvalue of 

 has a unique solution for every 
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Eigenfunction series  

Just as square-integrable functions admitted trigonometric series expansions, -weighted square-
integrable functions admit eigenfunction series expansions. Namely, for , we can
define

where

and the  are the eigenfunctions of a regular SLP.

If  is continuous and piecewise smooth, then such a series converges pointwise to  on .
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Appendix A: The Jordan normal form  

Let  denote an -dimensional -vector space, where .  will denote an arbitrary
endomorphism of  unless otherwise specified.

The characteristic and minimal polynomials  

Characteristic polynomial of : 

 thus defined is a monic polynomial of degree  whose roots are the eigenvalues of .

Cayley-Hamilton theorem

Minimal polynomial of : the (nonzero) monic polynomial  of minimal degree satisfying 

 15

Invertibility and the minimal polynomial

 is invertible if and only if .

Corollary:

Eigenvalues and the minimal polynomial

 is an eigenvalue of  if and only if . 16

Generalized eigenvectors  

(Rank- ) generalized eigenvector of  of eigenvalue : vector  such that  but 

Jordan chain generated by the rank-  generalized eigenvector  of  of eigenvalue : ,
where  (note that  is a rank-  generalized eigenvector)

Generalized eigenspace of  for the eigenvalue  (denoted ): the set of all generalized
eigenvectors of  of eigenvalue , along with 

Recall that the geometric multiplicity of an eigenvalue  is , where 
 is the (ordinary) eigenspace of  for . The algebraic multiplicity of  is its

multiplicity as a root of , but also admits a characterization in terms of eigenspaces.

The algebraic multiplicity of an eigenvalue  of  is .

It is easy to see that  and thence that  is a -invariant subspace. Note
also that  is nilpotent by definition.

The Jordan normal form  

Suppose that  and let  be the distinct eigenvalues of . Then .

Thus, if  is the algebraic multiplicity of , there is a basis of  for which the matrix of  is of the form
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where  is the ( ) matrix of .

Now if  is nilpotent, there is a basis of  for which its matrix is strictly upper triangular:
namely, the concatenation of bases for . Hence it is possible to write each  in the
form

since . But a stronger statement concerning the structure

of nilpotent operators can be made.

If  is nilpotent, there exist vectors  and integers  such
that

is a basis for , where .

Taking  above (with ), we find that  can itself be written in the

form

where  is a  matrix of the form

Hence there is a basis for which the matrix of  is block diagonal, with each block being of the form

for some eigenvalue . These blocks are called Jordan blocks, and the resulting form of the matrix of 
is called its Jordan normal (or canonical) form. In other words, , where  is an invertible
matrix and  is a Jordan matrix (a block diagonal matrix of Jordan blocks).

As for the columns of , suppose that the basis vectors for the Jordan block  are . Then 

, so the basis is a (reversed) Jordan chain

generated by the rank-  generalized eigenvector  of eigenvalue . Consequently,  consists of

Jordan chains of generalized eigenvectors of , with one chain for each Jordan block (N.B.: there may be
multiple blocks for a given eigenvalue!).



Another useful observation is that  is the number of linearly
independent generalized eigenvectors of rank , and is therefore the number of Jordan blocks of size 

.

Eigenvalues and the Jordan normal form

The number of Jordan blocks with ’s on their diagonals is the geometric multiplicity of ; the sum of
their sizes is the algebraic multiplicity of .

(If these are equal, each Jordan block for  must be , and the eigenvalue is called semisimple.  is
diagonalizable if and only if all its eigenvalues are semisimple.)

The minimal polynomial and the Jordan normal form

The minimal polynomial of  is , where  is the size of the largest Jordan block for 
(also called the index of ).



Appendix B: The matrix exponential  

If , where , the matrix exponential of  is defined as

Note that  and that  for all invertible matrices . We also have 
 if  and  commute.

Clearly, if , then . From this, the matrix exponential of any
diagonalizable matrix is readily computed.

For the general case, it suffices to compute , where  is the Jordan normal form of . Since  is a direct
sum of Jordan blocks, we can compute the exponential of each block separately and take the direct sum
of the results. But each Jordan block is of the form , where  is nilpotent, and 

. If the block size (i.e., the index of nilpotence of ) is , we have

The Jordan normal form may also be used to compute , simply by computing

for each Jordan block . (Of course, if  is diagonalizable, each Jordan block is of the form , and

.)

When the general solution to  is sought, it suffices to compute  (when ), since
the invertible matrix  may be absorbed into the constant , i.e., .

However, the solution in this form may involve complex coefficients and functions even when  is real. In
general, one could use the real Jordan normal form.

For a simple (or, more generally, a nondefective) complex eigenvalue of , explicit formulae are relatively
simple to state. Since  is real, its complex eigenvalues and eigenvectors come in conjugate pairs. Given

an eigenpair  of  with , we can replace the solutions  with .
Using Euler’s formula, we obtain
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where  and . (Incidentally, this can be written as

where  denotes the  matrix for counterclockwise rotation by .)

For reference and illustration, we also note what happens in the case of a double eigenvalue  with
defect 1 (i.e., geometric multiplicity ). If  is a Jordan chain for the eigenvalue , we obtain
the solutions .



1. This is because the space of solutions is the kernel of a linear differential operator! ↩

2. If  and  so that , the general solution in this case can be written as 

, which unifies the real and complex cases. In fact, if , we have  and  (where, by symmetry, the factor 

of  is immaterial in  and may be absorbed into  for ). ↩

3. The (ordinary) frequency is  (cycles per unit time) and the period is . ↩

4. We reserve the variable  for the angular frequency of a sinusoidal forcing function (see below) and therefore use  where  was previously. ↩

5. The converse, however, is false:  and  are (continuously) differentiable on  and their Wronskian vanishes identically 

thereon, yet they are not linearly dependent on any neighbourhood of the origin. ↩

6. More generally,  can be meromorphic functions. ↩

7. More generally, an ordinary point is one at which  are analytic. ↩

8. More generally, a regular singular point is a singular point at which  has a pole of order  and  has a pole of order . ↩

9. Given that , solving for  in terms of  yields , whence the result follows. ↩

10. We assume that  is invertible (or equivalently, that both its eigenvalues are nonzero) so that the origin is an isolated critical point of the system. 

Indeed, if there were even one other critical point, by linearity there would be infinitely many (constituting a subspace of the plane), so the origin is an 

isolated critical point if and only if it is the sole critical point. ↩

11. When the eigenvalues are distinct and of the same sign, nodes are sometimes also called “improper” owing to their graphical similarity to the 

latter case. ↩

12. As an example, a free undamped mass-spring system obeys the conservative equation . The quantity , or 

equivalently, , is therefore conserved. But this is just the total energy of the system: the first term is kinetic energy; the second is 

potential energy! ↩

13. We can rule out the possibility of a spiral (source or sink) since the conservation equation implies that trajectories are symmetric about the -axis. 

↩

14. As an example, a free undamped pendulum obeys the conservative equation . The critical points occur when  (the 

pendulum is stationary) and  (it is hanging straight down) or  (it is balanced upside down). The former is evidently a stable centre (

); the latter an unstable saddle point ( ). ↩

15. That such a polynomial exists follows from a dimension argument; uniqueness is immediate. Moreover, Euclidean division shows that the 

polynomials that annihilate  are exactly the multiples of . ↩

16. Apply the main result to , whose minimal polynomial satisfies . ↩
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