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Calculus  
Differential calculus  
Derivatives  

(Total) derivative of  at : linear map  such that

Jacobian (matrix) of  at : matrix representation of 

Gradient of  at  (denoted ): transpose of the Jacobian of  at ; consequently, 
 for all 

Directional derivative of  at  along the unit vector :

If  is differentiable at , then .

Partial derivative of  at  with respect to :

If  is differentiable at , then

Conversely, if all partials of a function  exist in a neighbourhood of  and are continuous at ,
then  is differentiable at .

Chain rule

If  and  are differentiable, then

For instance, if , , and , then

so .

Clairault’s theorem

If the second partials of  exist and are continuous at , then the mixed partials of  are equal
at , i.e.,
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for all .

Taylor series  

Taylor’s theorem

Suppose that  is  times differentiable on  and  is continuous on , and let 
. Then

for some  between  and .

If  is absolutely continuous on the closed interval between  and , then the remainder term is
equal to

Critical points and extrema  

First derivative test

If  is a critical point of  and  changes sign at , then  is a local minimum or maximum of 
according as  changes from nonpositive to nonnegative or vice-versa.

Second derivative test

If  is a critical point of  and the Hessian of  at  is positive definite (resp. negative definite),
then  is a local minimum (resp. maximum) of . If it is indefinite but invertible, then  is a saddle point of 

.

Method of Lagrange multipliers

To find the extrema of  subject to the constraints , set 

 and .

Integral calculus  
Darboux and Riemann integrals  

Partition of : finite sequence 

Lower/upper Darboux sum of  with respect to the partition :

Lower/upper Darboux integral of :
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Coordinate system Substitution Jacobian determinant

Polar

Cylindrical

Spherical

If , their common value is termed the Darboux integral of  and is denoted 

.

Tagged partition of : partition  of  with tags  for each 

Riemann sum of  with respect to the partition  with tags :

If there exists an  such that for all  there exists a partition  of  such that 
 for all tagged partitions  (i.e., for all refinements of ), then  is called the

Riemann integral of  and is denoted . The Riemann and Darboux integrals are equivalent.

A bounded function  is Riemann/Darboux integrable if and only if it is continuous a.e.

Multiple integrals  

Fubini’s theorem

Let  and  be -finite measure spaces. If , then

The conclusion of Fubini’s theorem also holds if  is nonnegative and measurable (Tonelli’s theorem).
Hence if  is a measurable function on  and any one of , ,  is
finite, then the iterated integrals of  are equal.

Change of variables

Let  be open and  be an injective  function with  invertible for all . If 
, then

Similarly, the conclusion of the change of variables theorem holds if  is nonnegative and measurable.
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Differentiation under the integral sign  

Leibniz’s rule (differentiation under the integral sign)

Suppose that  and that  for each . If  exists and there is a 

 such that  for all , then

Vector calculus  
Vector differential operators  

Gradient of :

Curl of :

Divergence of :

By Clairault’s theorem,  and  provided that the requisite partials are
continuous.

Conservative vector field : vector field such that  for some  scalar field 
 (called a scalar potential for )

Let  be a vector field with continuous partials. Then  is conservative if and only if 

 (when ) or  (when ).

Line and surface integrals  

Line integral of a scalar field  along :

where  is a parametrization of 

Line integral of a vector field  along :

where  is a parametrization of  (and  is the tangent vector to )

Surface integral of a scalar field  over :
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where  is a parametrization of 

Surface integral of a vector field  over :

where  is a parametrization of  (and  is the normal vector to )

Integral theorems  

Gradient theorem

Let  be a smooth curve parametrized by , and let  be a scalar field with continuous
partials on . Then

If  is a conservative vector field, the gradient theorem implies that  is path-independent (or

equivalently,  for any closed curve ). Conversely, if  is continuous and  is path-

independent in a domain , then  is conservative on .

Stokes’ theorem

Let  be a piecewise smooth oriented surface bounded by a finite number of piecewise smooth simple
closed positively-oriented curves, and let  be a vector field with continuous partials on . Then

Gauss’/divergence theorem

Let  be a solid bounded by a piecewise smooth oriented surface, and let  be a vector field with
continuous partials on . Then

Green’s theorem

Let  be a planar region bounded by a finite number of piecewise smooth simple closed positively-
oriented curves, and let  be a vector field with continuous partials on . Then

Green’s theorem can be derived from Stokes’ theorem by taking  and identifying  with 
 (whose normal vector would be ).
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Real analysis  
Fundamentals  
Sequences  

Bolzano-Weierstrass theorem

Every bounded sequence in  has a convergent subsequence.

Completeness of Euclidean space

Every Cauchy sequence in  converges.

Monotone convergence theorem

A monotonic sequence in  is convergent if and only if it is bounded.

More precisely, an increasing sequence that is bounded above converges to its supremum, whereas a
decreasing sequence that is bounded below converges to its infimum.

Limit superior of a sequence :

Limit inferior of a sequence :

Equivalently, the limit inferior and superior may be defined as the infimum and supremum, respectively,
of the set of subsequential limits (in ) of .

Series  

As a consequence of the Cauchy criterion for sequences, we have

Cauchy’s convergence test

 converges if and only if for all  there exists an  such that  for 
.

In particular (taking ), the series converges only if .

Similarly, the monotone convergence theorem implies that a series of nonnegative terms converges if
and only if the sequence of its partial sums is bounded.

Convergence of the geometric series

 converges to  if  and diverges otherwise.

Convergence of the -series

 converges if and only if , and likewise for .

Direct comparison test

If  and  converges, then  converges.

If  and  diverges, then  diverges.
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Corollary:

Limit comparison test: if , then  converges if and only if  converges.

Cauchy condensation test

If  is a nonincreasing sequence of nonnegative terms, then .

Thus,  converges if and only if  converges.

Ratio test

If , then  converges.

If  or  for all sufficiently large , then  diverges.

Root test

If , then  converges.

If , then  diverges.

Dirichlet’s test

If the sequence of partial sums of  is bounded and  decreases to zero (i.e.,  and 
), then  converges.

Corollaries:

Alternating series test: if  for all  and  decreases to zero, then 

 converges. 1

Abel’s test: if  converges and  is bounded and monotone, then  converges. 2

Continuity, compactness, and connectedness  

Continuous function  between topological spaces : the preimage under  of each open set in  is
an open set in 

Function  between topological spaces  is continuous at : the preimage under  of each
neighbourhood of  is a neighbourhood of  (  is continuous if and only if  is continuous at each 

)

Compact topological space : every open cover of  has a finite subcover

Connected topological space : not disconnected (i.e., not the union of two disjoint nonempty open
sets)

In Euclidean space, we have the following characterizations:

Continuity in Euclidean space

 is continuous at  if and only if 
.

Heine-Borel theorem

A subset of  is compact if and only if it is closed and bounded.

Connectedness in 
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A subset of  is connected if and only if it is an interval (i.e., a set  such that 
).

In general, continuous maps preserve both compactness and connectedness. Two important
consequences for real-valued functions are:

Extreme value theorem

Let  be a nonempty compact topological space and  be continuous. Then  is bounded and
attains both its infimum and supremum on .

Intermediate value theorem

Let  be continuous. If  is strictly between  and , then there exists an 
 such that .

Uniformly continuous function  between metric spaces : 

Let  be metric spaces with  compact. If  is continuous, then it is uniformly so.

Advanced calculus  

(Cauchy’s) mean value theorem

If  are continuous on  and differentiable on , then there exists a  such
that . (The ‘ordinary’ mean value theorem has .)

Mean value theorem for integrals

If  is continuous, then it attains its mean value at some , i.e., 

.

Darboux’s theorem

Let  be differentiable (but not necessarily continuously so). If  is strictly between 
and , then there exists an  such that .

Hölder’s inequality

Suppose  are measurable functions on some measure space. If  and  is the conjugate
exponent to  (i.e., ), then .

Corollary:

Cauchy-Schwarz inequality:  for . 3

Inverse function theorem

Let  be open and  be . If  is invertible at some , then  is a local 
diffeomorphism at  (i.e., there exists an open set  such that  is bijective, , and has a 

inverse). Moreover, .

Corollary:

If  are as above and  is invertible at every , then  is an open map. 4
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Implicit function theorem

Let  be open and  be , and suppose that  for some 
(regarding  as a subset of ). Write  with .

If  is invertible, then there exists an open set  for which there is a unique  map 
satisfying  and  for all . Moreover, .

Contraction mappings  

Contraction mapping  on a metric space : there exists a  such that 
 for all  (the minimal  is called the Lipschitz constant of )

Banach fixed point theorem

Let  be a contraction mapping on a nonempty complete metric space. Then  admits a unique fixed point
(a point  such that ). Moreover, fixed-point iteration starting from any point converges to it
(more precisely, if  is the fixed point of ,  is arbitrary, and , then  with 

).

Sequences and series of functions  
In this subsection, all functions are assumed to be real- or complex-valued functions defined on a subset of a
metric space, unless otherwise indicated.

Pointwise and uniform convergence  

 pointwise on : 

 uniformly on : 

Weierstrass M-test

If  for each  and , then  converges absolutely and uniformly.

Uniform limit theorem

If  uniformly, then . Consequently, the uniform
limit of a sequence of continuous functions is continuous.

Dini’s theorem

If a monotone sequence of continuous functions converges pointwise on a compact topological space, then
the convergence is uniform.

If  are metric spaces with  complete, then  (bounded functions) and  (continuous
bounded functions) are complete with respect to the uniform metric .

Note that if  is compact,  is complete.

Differentiation and integration of sequences of functions  

Differentiation of a sequence of functions

Suppose that  is a sequence of differentiable functions on  such that  converges for
some . If  converges uniformly, then  converges uniformly to a function  and 

.

Dominated convergence theorem
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Suppose that  with  a.e. If there exists a  such that  a.e. for each , then 
 and .

Corollary:

If  and , then (  is defined a.e.,)  and .
5

The Arzelà–Ascoli theorem  

Pointwise bounded family  of functions on : 

Uniformly bounded family  of functions on : 

Equicontinuous family  of functions on : 
 (cf. uniform continuity of )

Relatively compact subspace  of a topological space :  is compact; if  is a metric space, this is
equivalent to every sequence in  having a subsequence converging in 

Arzelà–Ascoli theorem

Let  be a compact metric space. A family  is relatively compact if and only if it is pointwise
bounded and equicontinuous.

In fact, for an equicontinuous family, pointwise and uniform boundedness are equivalent, so “pointwise”

may be replaced by “uniformly” above. 6

The Weierstrass approximation theorem  

Subalgebra , where  is a compact Hausdorff space and : set of functions
closed under scalar ( ) multiplication, addition, and multiplication

 separates points: for all  with , there exists an  such that 

 vanishes nowhere: for all , there exists an  such that 

 is self-adjoint:  is closed under complex conjugation

Stone-Weierstrass theorem (real version)

Let  be a compact Hausdorff space and  be a subalgebra of  that separates points and
vanishes nowhere. Then  is dense in .

Corollary:

Weierstrass approximation theorem: polynomials are dense in .

Stone-Weierstrass theorem (complex version)

Let  be a compact Hausdorff space and  be a self-adjoint subalgebra of  that separates points
and vanishes nowhere. Then  is dense in .

Corollary:

Trigonometric polynomials ( ) are dense in  (where  is the unit circle in 
).

(The Stone-Weierstrass theorems continue to hold if  is merely locally compact Hausdorff and “ ” is
replaced by “ ”, the continuous functions vanishing at infinity.)
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Power series  

Power series: series of the form , where 

Radius of convergence of a power series:  (we also
have  if this limit exists)

Convergence of power series

A power series converges absolutely and compactly (i.e., uniformly on compact subsets) in , its disc
of convergence.

Differentiation and integration of power series

A power series may be differentiated and integrated term-by-term in ; the resulting series have
the same radii of convergence as the original.

Abel’s theorem

If a real power series centred at  converges at  (i.e., at an endpoint of its interval of
convergence), then it is also continuous at .
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Complex analysis  
Fundamentals  
Elementary functions  

Complex exponential: 

Complex sine and cosine: 

Euler’s formula: 

de Moivre’s formula:  for all 

Complex hyperbolic sine and hyperbolic cosine: 

th root (n-valued): 

Complex logarithm (multi-valued): 

Complex power:  (if  with  in lowest terms, then  is n-valued; otherwise, it
has countably infinitely many values)

Differentiability and holomorphicity  

In the following definitions,  denotes an open subset of .

 (complex-)differentiable at  7 :  exists

 holomorphic on :  is differentiable at every 

 holomorphic at  7 :  is differentiable in a neighbourhood of  (or equivalently,  is
holomorphic on a neighbourhood of )

 entire:  is holomorphic on 

Wirtinger derivatives of :

where  and 

If  is viewed as a function of two real variables ,  with , then 
 and likewise .

Cauchy-Riemann equations

If  is complex-differentiable at , then  and .

Writing  and , the first part of the conclusion reads

which are the eponymous equations.

Conversely, if the partials of  and  exist in a neighbourhood of , are continuous at , and

satisfy the Cauchy-Riemann equations, then  is complex-differentiable at . 8
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Analytic functions  

From the section on power series, we know that  is holomorphic on its disc of

convergence with . (Thus, a power series is infinitely differentiable on its

disc of convergence.)

 analytic at : there exists a power series centred at  converging to  in a
neighbourhood of ; in other words,  is “locally given by a power series”

 analytic on :  is analytic at every 

 compactly on :  uniformly on all compact subsets of 

 locally uniformly on : every  has a neighbourhood on which  uniformly

For open sets , compact and locally uniform convergence are equivalent. A consequence of
Morera’s theorem is the following:

Locally uniform limit of analytic functions

If  is a sequence of analytic functions on an open set  converging locally uniformly (or
equivalently, compactly) to , then  is analytic.

Complex integration  
Contour integration  

Integral of a continuous function  along a rectifiable curve :

where  is a parametrization of 

Integrals along contours comprised of successive rectifiable curves are then defined in the obvious way.
We allow contours to include “curves” consisting of a single point.

Let  be open and suppose that  is continuously complex-differentiable. Then for any
contour  from  to ,

Corollary:

If, moreover,  is connected and , then  is constant on .

Domain : an open connected subset of ; equivalently (by openness), an open path-connected
subset of 

Thus, the corollary above may be stated as: “if  on a domain , then it is constant on ”. 9

Suppose that  is continuous on a domain . Then  has an antiderivative on  if and only if  is

path-independent (for ), which in turn is equivalent to  for all closed contours .
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Cauchy’s integral theorem  

Simply connected set :  is path-connected and any two curves in  with common endpoints are
fixed-endpoint homotopic (i.e., can be continuously deformed into each other while keeping both

endpoints fixed) 10

Deformation invariance theorem

Suppose that  is holomorphic on an open set . If  are rectifiable curves that are fixed-
endpoint homotopic (or are closed rectifiable curves that are homotopic as such), then

As every closed curve in a simply connected domain is null-homotopic (that is, homotopic to a point), we
obtain:

Cauchy’s integral theorem

Suppose that  is holomorphic in a simply connected domain . Then for any closed contour ,

Cauchy’s integral formula

Suppose that  is holomorphic in an open set  that contains the closure of a disc . Then

for all . (By the above, the integral may equivalently be taken over any closed curve in 
that is homotopic to .)

Corollary:

Cauchy’s inequalities/estimates: if  is the centre of the above disc  and  is its radius, then

Analyticity of holomorphic functions

Suppose that  is holomorphic in an open set  and that . Then

for all .

Thus, holomorphicity and analyticity are equivalent (both “at a point” and “on an open set”).

Liouville’s theorem

If  is bounded and entire, then  is constant.

Fundamental theorem of algebra

Every complex polynomial of degree  has exactly  roots in  counted with multiplicity.
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Identity theorem

If  and  are holomorphic in a domain  and agree on a nonempty open subset of  (or, more generally,
on a subset having a limit point in ), then  throughout .

Morera’s theorem

If  is continuous on a domain  (not necessarily simply connected) and  for every

triangle , then  is holomorphic on .

The complex logarithm  

Existence of the complex logarithm on a simply connected domain

Suppose that  is a simply connected domain containing  and excluding . For all , define

where  is any rectifiable curve from  to , which is well-defined by Cauchy’s integral theorem.

Then  is holomorphic in  with  and  for all , and  agrees with
the real logarithm near .

The principal branch of the complex logarithm has .

More generally, if  is a nowhere vanishing holomorphic function on a nonempty simply connected
domain , there exists a holomorphic function  such that  and  on :

where  is a rectifiable curve from a fixed point  to  and  is any constant satisfying 
.

Residue theory  
Zeroes, singularities, and residues  

Zero of : a point  at which  vanishes

By the identity theorem, the zeroes of a nontrivial holomorphic function must be isolated.

Zeroes of holomorphic functions

If  is holomorphic in a domain  and has a zero at  (but does not vanish identically), then there
exists a unique  and a neighbourhood  of  in which  for some non-
vanishing holomorphic function  on .

The number  above is called the multiplicity/order of the zero; a simple zero is a zero of multiplicity 1.

Deleted/punctured neighbourhood of :  for some 

Isolated/point singularity of : a point  at which  is undefined but about which  is defined in a
deleted neighbourhood; these are categorized into three types:

Removable singularity:  may be defined at  such that it is holomorphic in a neighbourhood of 

Pole:  defined to be zero at  is holomorphic in a neighbourhood of 

Essential singularity: neither a removable singularity nor a pole

Riemann’s theorem (on removable singularities)
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Suppose that  is holomorphic in an open set  except at , where it has an isolated singularity. If 
is bounded in a deleted neighbourhood of , then  is a removable singularity of .

Corollary:

If  and  are as above, then  is a pole of  if and only if .

Casorati-Weierstrass theorem (on essential singularities)

Suppose that  is holomorphic in an open set  except at , where it has an essential singularity.
Then the image under  of any deleted neighbourhood of  is dense in .

Poles and residues

If  has a pole at , then there exists a unique  and a neighbourhood  of  in which 
 for some non-vanishing holomorphic function  on .

The number  above is called the order/multiplicity of the pole; a simple pole is a pole of order 1. If 
has a zero of multiplicity  at , then  has a pole of order  at , and vice versa (defining 

).

If  has a pole of order  at , then

where  is a holomorphic function in a neighbourhood of .

The sum above is called the principal part of  at , and  is called the residue of  at  and is
denoted  (or ).

Computation of residues

If  has a pole of order  at , then

Residue theorem

Suppose that  is holomorphic in an open set  except at a finite set of poles . Then for any
positively-oriented simple closed contour  enclosing ,

Laurent series  

If  is holomorphic in the annulus  (where )
centred at , then it admits a unique Laurent series expansion

therein that converges absolutely and compactly. The coefficients  are given by
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where  is a simple closed contour in the annulus enclosing  (cf. Cauchy’s integral formula).

Classification of isolated singularities using Laurent series

Suppose that  has an isolated singularity at  and that it admits a Laurent series expansion 
 in . If , then  is a

removable singularity if and only if .

pole of order  if and only if .

essential singularity if and only if .

Evaluation of integrals  

Trigonometric integrals

Given an integral of the form

where  is a rational function of  and  and  is an interval of length , the
substitution  yields

Principal value integrals

Cauchy principal value of :

(If the improper integral – that is,  – exists, it is equal to its principal value.)

If  are polynomials with , then

where . (The same is true for .)

Jordan’s lemma

If  and  are polynomials with , then

(The same is true for  when .)

Cauchy principal value of , where  is discontinuous at :

(If the improper integral – that is,  – exists, it is equal to its principal value.)
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Small arc/indentation lemma

If  is a simple pole of , then

where .

Integrals involving (multi-valued) complex powers

Integrals over  involving non-integral powers are occasionally encountered.

For such integrals, it is efficacious to integrate back and forth along the nonnegative real branch cut of

the logarithm, with shrinking circular indentations around nonnegative singularities and an expanding

circular contour closing the loop

The residue theorem remains applicable (albeit not directly)

The values of the power (say, ) “below” the branch cut will be  times its values “above” the

branch cut

Meromorphic functions  

Extended complex plane ( ): , where  for  and  for  (addition
and multiplication by  also yield , except for  and , which are undefined as usual)

(  is the one-point compactification of ; viz., its open sets are the open subsets of  together with sets
of the form  for  compact in .)

Isolated singularity of  at : isolated singularity of  at 

Isolated singularities of entire functions at 

If  is an entire function on , then  has an isolated singularity at  and

 is a removable singularity of  if and only if  is constant.

 is a pole of order  of  if and only if  is a polynomial of degree .

 is an essential singularity of  if and only if  is non-polynomial.

 meromorphic on :  is holomorphic on  except for a closed discrete set  of
removable singularities and poles (or equivalently,  can be extended to a holomorphic function 

 with )

 meromorphic on :  is meromorphic on  and is holomorphic or has a pole at  (or

equivalently,  can be extended to a holomorphic function )

Meromorphic functions on 

The meromorphic functions on  are the rational functions.

The argument principle and Rouché’s theorem  

Argument principle

Suppose that  is meromorphic in an open set . Then for any positively-oriented simple closed
contour  on which  is nonvanishing and nonsingular,
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where  and  are, respectively, the numbers of zeroes and poles of  inside , counted with
multiplicities.

Rouché’s theorem (symmetric, meromorphic version)

Suppose that  and  satisfy the hypotheses of the argument principle (for the same  and ) and
moreover that  on . Then , where  and  (resp.  and )
are, respectively, the numbers of zeroes and poles of  (resp. ) inside , counted with multiplicities.

Corollary:

Rouché’s theorem (asymmetric, holomorphic version): if  and  satisfy the hypotheses of the
argument principle with “meromophic” replaced by “holomorphic” and, in addition,  on 

, then . 11  12

The following result can be derived from Rouché’s theorem.

Open mapping theorem

If  is nonconstant and holomorphic on a domain , then  is an open map.

Corollary:

Maximum modulus principle: under the same hypotheses,  cannot attain a maximum in . 13

Furthermore, if  is compact and  is also continuous on , then  attains its maximum (over 

) on . Hence .

Harmonic functions  

Harmonic function :  and 

We now identify subsets of  with those of .

If  is holomorphic on , then  and  are harmonic on .

If  is harmonic on a simply connected domain , then there exists a holomorphic function  on 
such that . Moreover,  is unique up to an additive (real) constant and is called a harmonic
conjugate of .

To find a harmonic conjugate of , one can take  to be an antiderivative of , which
is holomorphic by the Cauchy-Riemann equations.

Mean value property

If  is holomorphic in , then

for any .

Corollary:

Harmonic functions also possess the mean value property.

If  is harmonic in a simply connected domain and  is a harmonic conjugate of , the maximum modulus
principle applied to  (whose modulus is ) implies that the conclusions of the maximum modulus
principle apply to the extrema of harmonic functions.
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Conformal maps  
Biholomorphic functions  

Let  be open sets.

Biholomorphic function (or biholomorphism) :  is bijective and holomorphic

Biholomorphic functions are also called conformal maps. 14

If  is injective and holomorphic, then  is nonvanishing on . Thus,  defined on  is
holomorphic.

In particular, the inverse of a biholomorphism is a biholomorphism.

 and  are said to be biholomorphically equivalent (or conformally equivalent 14 ) if there exists a
biholomorphism between them. (Note that this is indeed an equivalence relation by the result above.)

Local injectivity and preservation of angles 14

If  is holomorphic at  and , then  is locally injective at . Moreover,  preserves
the angles of directed smooth curves through .

Automorphisms and Möbius transformations  

Automorphism of : biholomorphic function from  to itself 15 ; the set of all automorphisms on  is
denoted  and is a group under composition

Automorphisms of the unit disc

Let . For , define

and . Then

The maps  are called Blaschke factors. In other words, the automorphisms of the unit disc are the
Blaschke factors (modulo complex signs). Moreover, we see that those that fix the origin are rotations.

This can be proved using the following lemma.

Schwarz’s lemma

Suppose that  is holomorphic and that . Then:

 for all 

If  for some  or , then  for some .

Möbius (or linear fractional) transformation: function of the form , where  and 

We define  if  and  otherwise, so that  is an automorphism of .

Möbius transformations compose a group under composition, wherein
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Fixed points of Möbius transformations

Every non-identity Möbius transformation has exactly two fixed points (counted with multiplicity).

Corollary:

If two Möbius transformations agree at three distinct points, then they are identical. 16

Given distinct points , the Möbius transformation with , , and  is

Cross-ratio of distinct points :

As a consequence of this definition, the Möbius transformation  that satisfies 
 may be found by solving  for .

Preservation of cross-ratios

If  is a Möbius transformation, then

for any distinct points .

Generalized circle in : a circle ( ) or a line (
)

For any three distinct points in , there is a unique generalized circle passing through them.

Preservation of generalized circles

Möbius transformations map generalized circles to generalized circles.

Symmetric points  with respect to the generalized circle : all generalized circles passing
through  and  intersect  orthogonally

Preservation of symmetric points

If  is a Möbius transformation and  are symmetric with respect to , then  are
symmetric with respect to .

If  is the circle , then .

If  is the line , then .

The automorphisms of the unit disc can also be written as Möbius transformations 17 :

Automorphisms of the unit disc

Let . Then

Indeed, the automorphisms of several important domains are groups of Möbius transformations:

Automorphisms of the upper half-plane



Domain Range Map Inverse

 (sector)

 (first quadrant)

 (horizontal strip)

 (horizontal half-strip)

 (vertical half-strip)

omitted

omitted

Let . Then

Automorphisms of the complex plane

Automorphisms of the extended complex plane

In other words, the automorphisms of the extended complex plane are the Möbius transformations.

The Riemann mapping theorem  

Riemann mapping theorem

Let  be a nonempty simply connected domain that is not all of . Then for any , there exists a
unique conformal map  satisfying  and . (Hence  is conformally
equivalent to .)

Conformal maps

In the table below,  denotes the logarithm with branch cut .

For example, , so  maps the vertical half-strip 

 to .
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Harmonic analysis  
Fourier series  
In this subsection, 1-periodic functions on  are identified with functions on  ( ), the unit circle in the
complex plane.

Fourier coefficients of : , where 

Fourier series of : 

The th partial sum of the Fourier series of , i.e.,  is denoted .

Uniform convergence of Fourier series

If  and , then  uniformly.

If  and  exists and is piecewise continuous, then  uniformly.

Pointwise convergence of Fourier series

If  and  for all  in a neighbourhood of , then . (In
particular, if  is differentiable, then the hypothesized bound holds.)

If , then .

 convergence of Fourier series

If , then  in .

Corollaries:

If , then .

Parseval’s identity: if , then .

The Fourier transform  
Fourier transform of : 

Inverse Fourier transform of : 

Properties of the Fourier transform

If , then  and  is uniformly continuous.

If , then .

If  and , then  and .

If  and  for all multiindices with , then 

.

If  is compactly supported, then  with .

Riemann-Lebesgue lemma: if , then .

 (hence the Fourier transform of a Gaussian is a Gaussian).

Schwartz space : , where  (these

are seminorms for multiindices )

af://n744
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We say that a sequence  converges to  if and only if  for each
pair of multiindices .

Properties of Schwartz space

The following are equivalent to :

 is bounded for each  and multiindex .

 for each pair of multiindices .

 and  for each pair of multiindices .

 is dense in .

 for all .

 is closed under multiplication by polynomials, differentiation, multiplication, and the
Fourier transform.

Convolution of : 

Properties of convolution

Young’s convolution inequality: if  and , then 
 for all  and .

If  and , then  and .

 is closed under convolution.

If , then ; if , then .

Let  be an approximate identity 18 .

If , then  uniformly as .

If  with , then  in  as .

If , there exists a sequence  such that if  and 

, then  in . (If  also, then  uniformly.)

Fourier duality

If , then .

Fourier inversion theorem

If , then  a.e. (or equivalently,  for a.e. ).

Corollaries:

If  and , then  (a.e.) (viz., the Fourier transform is injective on ).

The Fourier transform is an automorphism of  (as a TVS).

Plancherel’s theorem

If , then . Furthermore, there exists a unique bounded operator 

on  that agrees with the Fourier transform on ;  is unitary and agrees with the Fourier
transform on .



1. Take  and  in Dirichlet’s test. ↩

2. Let  and  according as  is nonincreasing or nondecreasing. By Dirichlet’s test,  converges, whence 

. ↩

3. Take  in Hölder’s inequality and note that . ↩

4. It suffices to show that  is open. By the inverse function theorem, for each , there exists an open set  such that  is open 

(using continuity of the local inverse). Therefore  is open. ↩

5. By the monotone convergence theorem, , so . Hence  is defined a.e. and is integrable. The 

conclusion then follows from the dominated convergence theorem applied to the sequence of partial sums. ↩

6. That uniform boundedness implies pointwise boundedness is evident. As for the converse, let  be given and  be as in the definition of 

equicontinuity. Cover  with finitely many balls of radius  and thence combine the pointwise bounds for the centres of the balls with the assumption 

of equicontinuity. ↩

7. Some authors use the term “holomorphic at ” in place of what we refer to as “differentiable at ”. Under this convention, , for 

instance, is holomorphic at .  ↩ ↩

8. The first two conditions imply that  and  are -differentiable at  (see Derivatives); thence the Cauchy-Riemann equations entail that  is 

-differentiable at . ↩

9. Fix . For any , let  be a piecewise smooth curve from  to  (which exists by path-connectedness). Then 

. ↩

10. More precisely, two curves  with common endpoints  and  are said to be fixed-endpoint 

homotopic if there exists a continuous function  such that , and  for all  

(note that  may need to be reparametrized for this definition to be applicable in general). Homotopy may similarly be defined between closed 

curves, which are permitted to have different initial points. ↩

11. In fact, it is not necessary that  be nonvanishing on ; we have only assumed that it is for brevity of exposition. ↩

12. Apply the symmetric, meromorphic version to  and , noting that  on  since . ↩

13. If  attained a maximum at , the image under  of a neighbourhood of  would be open, and would therefore contain values of greater 

moduli than  – a contradiction. ↩

14. We adopt the convention under which “biholomorphic” and “conformal” are synonymous. However, the term “conformal” is sometimes used to 

refer to maps  that are holomorphic with  nonvanishing on . This condition is strictly weaker than biholomorphicity, as evidenced by 

functions such as  (with ). Yet other definitions take “conformal” to mean injective and holomorphic, which is a stronger 

requirement than in the aforementioned definition but still weaker than biholomorphicity. ↩ ↩ ↩

15. If , we define  to be the group of meromorphic bijections from  to itself. ↩

16. If the transformations are denoted  and , then  has three distinct fixed points and is therefore the identity. ↩

17. Make the change of variables , . ↩

18. That is,  with  and . ↩
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