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A proof of Zarantonello’s lemma

Note: The following lemma appears in a number of texts by Saad [4, 5], who refers to Rivlin
[3] for its proof. However, Rivlin’s book does not appear to contain this lemma – at least, not
explicitly in the form presented by Saad. A search for this lemma in other publications [1, 2]
reveals that it was originally introduced in a slightly different form by Varga [6], who in turn
attributes it to a personal communication with Zarantonello and provides a rather complicated
proof of the lemma. What follows is a simple proof of the lemma as it appears in Saad’s books.

Lemma (Zarantonello). Let r > 0 and γ ∈ C be a point not enclosed by Cr = {z ∈ C : |z| = r}
(i.e., |γ| ≥ r). Then

min
p∈Πk , p(γ)=1

max
z∈Cr

|p(z)|=
�

r
|γ|

�k

,

where Πk denotes the set of polynomials of degree at most k, with the minimum attained by
p(z) = (z/γ)k.

Proof. We will prove that if p ∈ Πk and M :=maxz∈Cr
|p(z)|, then for all |z| ≥ r,

|p(z)| ≤
M

rk
|z|k,

from which the lemma will follow by setting z = γ and taking the infimum over all such p with
p(γ) = 1. Let p̃ be the polynomial defined by p̃(w) = wkp(r2/w). For |w| ≤ r, we have

|p̃(w)| ≤max
w∈Cr

|p̃(w)|= rk max
w∈Cr

|p(r2/w)|= M rk,

where the inequality follows from the maximum modulus principle. Now if |z| ≥ r, then
w := r2/z satisfies |w| ≤ r, so |p̃(w)| ≤ M rk. But |p̃(w)| = (r2/|z|)k|p(z)|, whence |p(z)| ≤
M |z|k/rk. �
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