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A proof of Zarantonello’s lemma

Note: The following lemma appears in a number of texts by Saad [4, 5], who refers to Rivlin
[I3] for its proof. However, Rivlin’s book does not appear to contain this lemma - at least, not
explicitly in the form presented by Saad. A search for this lemma in other publications [z, [2]
reveals that it was originally introduced in a slightly different form by Varga [|6], who in turn
attributes it to a personal communication with Zarantonello and provides a rather complicated
proof of the lemma. What follows is a simple proof of the lemma as it appears in Saad’s books.

Lemma (Zarantonello). Let r > 0 and y € C be a point not enclosed by C. = {z € C : |z| =1}
(i.e., |y| = r). Then

min  max |p(z)| = (L)k,

PEM, p(y)=1 2€C, ly

where II, denotes the set of polynomials of degree at most k, with the minimum attained by

p(z) = (/1)
Proof. We will prove that if p € I, and M := max,_. |p(z)|, then for all |z| > r,
M
lp(z)l < FlZlk,

from which the lemma will follow by setting 2 = y and taking the infimum over all such p with
p(y) = 1. Let j be the polynomial defined by p(w) = w*p(r*/w). For |w| < r, we have

|B(w)l < max [p(w)| = r max |p(r*/w)| = Mr*,
weC, weC,

where the inequality follows from the maximum modulus principle. Now if |z| > r, then
w = r?/z satisfies |w| < r, so |p(w)| < Mr*. But |[p(w)| = (r?/|z])"|p(2)|, whence |p(z)| <
M|z|*/r*. [ |
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