A proof of the correctness of synthetic division

We consider the problem of dividing the polynomial $a(x)=\sum_{k=0}^{n} a_{k} x^{k}\left(a_{n} \neq 0\right)$ by the polynomial $b(x)=\sum_{k=0}^{m} b_{k} x^{k}\left(b_{m} \neq 0\right)$, where $0 \leq m \leq n$. Synthetic division arranges the coefficients of a and b in a table as follows:

Division then proceeds as illustrated below (the left side of the table has been condensed for the sake of space),

$$
\begin{array}{r|rrrrrrrr}
& a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{m} & a_{m-1} & a_{m-2} & \cdots \\
-b_{0} & & & \cdots & \cdots & \cdots & a_{0} \\
\vdots & & & \cdots & \cdots & \cdots & \cdots & \cdots & -b_{0} c_{0} \\
-b_{m-2} & & & & -b_{m-2} c_{n-m} & \cdots & -b_{m-2} c_{2} & -b_{m-2} c_{1} & -b_{m-2} c_{0} \\
-b_{m-1} & & -b_{m-1} c_{n-m} & -b_{m-1} c_{n-m-1} & \cdots & & \\
\cline { 3 - 10 } & a_{n} & \sum \cdots & \sum \cdots & -b_{m-1} c_{1} & -b_{m-1} c_{0} & & & \\
\hline & a_{m} & c_{n-m} & c_{n-m-1} & c_{n-m-2} & \cdots & & \cdots & c_{0} \\
& & & & d_{m-1} & d_{m-2} & \cdots & d_{0} \\
& & & & & &
\end{array}
$$

where the entry immediately below the bar in each column is the sum of the entries above the bar in that column, and the entry in the last row is this sum divided by b_{m}. The quotient is then $c(x)=\sum_{k=0}^{n-m} c_{k} x^{k}$, and the remainder is $d(x)=\sum_{k=0}^{m-1} d_{k} x^{k}$.
Note: In the following proof, we will regard b_{k} as zero if $k<0$ or $k>m$; similarly, we will regard c_{k} as zero if $k<0$ or $k>n-m$. Sums are to be understood as ranging over all integers unless otherwise specified.

From the illustration, it is clear that

$$
\begin{array}{rlr}
d_{k}=a_{k}+\sum_{i+j=k}-b_{i} c_{j}=a_{k}-\sum_{i} b_{i} c_{k-i}, & 0 \leq k<m ; \\
b_{m} c_{k}=a_{k+m}+\sum_{\substack{i+j=k+m ; \\
i \leq m-1}}-b_{i} c_{j}=a_{k+m}-\sum_{i \leq m-1} b_{i} c_{k+m-i}, & 0 \leq k \leq n-m .
\end{array}
$$

To prove the correctness of synthetic division, we must show that $b(x) c(x)+d(x)=a(x)$. We do so by comparing the coefficients of both polynomials. The coefficient of x^{k} in $b(x) c(x)+d(x)$
is clearly

$$
\left(\sum_{i} b_{i} c_{k-i}\right)+d_{k}
$$

which, for $0 \leq k<m$, is equal to

$$
\left(\sum_{i} b_{i} c_{k-i}\right)+\left(a_{k}-\sum_{i} b_{i} c_{k-i}\right)=a_{k}
$$

On the other hand, if $m \leq k \leq n$, the coefficient of x^{k} in $b(x) c(x)+d(x)$ is

$$
\begin{aligned}
b_{m} c_{k-m}+\sum_{i \neq m} b_{i} c_{k-i} & =\left(a_{k}-\sum_{i \leq m-1} b_{i} c_{k-i}\right)+\sum_{i \neq m} b_{i} c_{k-i} \\
& =a_{k}+\sum_{i \geq m+1} b_{i} c_{k-i} \\
& =a_{k}
\end{aligned}
$$

which completes the proof.

