Closure operators

Definition. Let *S* be a set. A **closure operator** on *S* is a function $cl : \mathcal{P}(S) \to \mathcal{P}(S)$ such that for all $A, B \subseteq S$,

- $A \subseteq cl(A)$ (cl is *extensive*)
- $A \subseteq B \implies cl(A) \subseteq cl(B)$ (cl is increasing)
- cl(cl(A)) = cl(A) (cl is *idempotent*).

We call cl(A) the **closure** of *A*; a set $C \subseteq S$ that is the closure of some subset of *S* is called a **closed set** of cl.

These three defining conditions are in fact equivalent to a single biconditional, which is sometimes easier to verify.

Theorem 1. A function $f : \mathcal{P}(S) \to \mathcal{P}(S)$ is a closure operator on *S* if and only if $A \subseteq f(B) \iff f(A) \subseteq f(B)$ for all $A, B \subseteq S$.

Proof. Let $A, B \subseteq S$, and suppose first that f is a closure operator. Then $A \subseteq f(B) \implies f(A) \subseteq f(f(B))$ (since f is increasing) $\implies f(A) \subseteq f(B)$ (since f is idempotent). Conversely, $f(A) \subseteq f(B) \implies A \subseteq f(B)$ (since f is extensive).

On the other hand, if *f* satisfies the biconditional above, then $f(A) \subseteq f(A) \implies A \subseteq f(A)$, so *f* is extensive. Using extensivity, we obtain $A \subseteq B \implies A \subseteq f(B) \implies f(A) \subseteq f(B)$, so *f* is increasing. Finally, $f(A) \subseteq f(A) \implies f(f(A)) \subseteq f(A)$, where the reverse inclusion holds by extensivity, so *f* is idempotent.

The following characterization of closed sets will be used extensively, and is frequently taken as the *definition* of a closed set.

Proposition. A set $A \subseteq S$ is closed *if and only if* it is equal to its own closure, i.e., cl(A) = A.

Proof. If *A* is closed, then A = cl(B) for some $B \subseteq S$, whence cl(A) = cl(cl(B)) = cl(B) = A (using idempotence). The converse follows immediately from the definition of a closed set.

Corollary. *S* is a closed set.

Proof. Clearly $cl(S) \subseteq S$, and the reverse inclusion follows from extensivity.

Moore collections

Definition. Let *S* be a set. A collection $\mathcal{C} \subseteq \mathcal{P}(S)$ of subsets of *S* is called a **Moore collection** if any intersection of elements in \mathcal{C} is also in \mathcal{C} .

The following two theorems exhibit a 'duality' between closure operators and Moore collections.

Theorem 2. Let cl be a closure operator on *S*. If \mathcal{C} is the collection of all closed sets of cl, then \mathcal{C} is a Moore collection, and for any $A \subseteq S$,

$$cl(A) = \bigcap \{ C \in \mathcal{C} : C \supseteq A \}.$$

In other words, any intersection of closed sets is also closed, and cl(A) is the intersection of all closed sets containing *A*.

Proof. Let $\{C_i\}_{i \in I} \subseteq \mathbb{C}$ be a collection of closed sets, and define $C = \bigcap_{i \in I} C_i$. If $x \in cl(C)$ and $i \in I$, then $C \subseteq C_i \implies cl(C) \subseteq cl(C_i) \implies x \in cl(C_i) = C_i$, so $cl(C) \subseteq C$. As the reverse inclusion holds by extensivity, *C* is equal to its own closure, and hence is closed. Thus \mathbb{C} is a Moore collection.

Now if $A \subseteq S$, let *B* denote the set on the right-hand side above. Clearly $A \subseteq B$ (an intersection of sets containing *A* must also contain *A*), so $cl(A) \subseteq cl(B) = B$, since *B* is an intersection of closed sets. On the other hand, $cl(A) \in C$ and $cl(A) \supseteq A$, so $B \subseteq cl(A)$.

Remark. cl(A) is therefore the "smallest closed set containing *A*", in that it is contained in any other closed set containing *A*.

Theorem 3. Let $\mathcal{C} \subseteq \mathcal{P}(S)$ be a Moore collection. Then the function $f : \mathcal{P}(S) \to \mathcal{P}(S)$ given by

$$f(A) := \bigcap \{ C \in \mathcal{C} : C \supseteq A \}$$

is a closure operator on S, and the collection of closed sets of f is C.

Proof. By Theorem 1, it suffices to prove that $A \subseteq f(B) \iff f(A) \subseteq f(B)$ for all $A, B \subseteq S$ to show that f is a closure operator on S. Suppose first that $A \subseteq f(B)$. Then $f(B) \in C$, as it is an intersection of elements of the Moore collection C, and $f(B) \supseteq A$, so $f(A) \subseteq f(B)$. On the other hand, if $f(A) \subseteq f(B)$, we must also have $A \subseteq f(B)$, since $A \subseteq f(A)$. Hence f is a closure operator on S.

Now if $C \subseteq S$ is closed, then $C = f(C) \in \mathbb{C}$ since \mathbb{C} is a Moore collection. Conversely, if $C \in \mathbb{C}$, then $C \supseteq C \implies f(C) \subseteq C$, and the reverse inclusion holds by extensivity. Thus the closed sets of *f* are exactly the sets of \mathbb{C} .

Thus, any closure operator is determined by a Moore collection (namely, the collection of its closed sets), and any Moore collection is determined by a closure operator.

Examples

If *V* is a vector space, it is easily verified that the collection of all subspaces of *V* is a Moore collection. The closure operator that this collection defines is none other than the *span* of a set of vectors. In other words, if $A \subseteq V$, then span(A) is *the intersection of all subspaces of V containing A*, or equivalently, *the smallest subspace of V containing A*.

Other examples are tabulated below:

Set	Moore collection	Closure operator	Notation
A vector space V	Subspaces of V	Span of A	span(A)
A topological space <i>X</i>	Closed sets of X	(Topological) closure of A	Ā
A group G	Subgroups of G	Subgroup generated by A	$\langle A \rangle$
A group G	Normal subgroups of G	Normal closure of A	$\langle A^G \rangle$
A ring R	Subrings of R	Subring generated by A	
A ring R	Ideals of R	Ideal generated by A	(A)
All subsets of a set <i>X</i>	σ -algebras on X	σ -algebra generated by A	$\sigma(A)$
\mathbb{R}^n	Convex subsets of \mathbb{R}^n	Convex hull of <i>A</i>	conv(A)
\mathbb{R}^{n}	Affine subsets of \mathbb{R}^n	Affine hull of A	aff(A)
\mathbb{R}^{n}	Convex cones in \mathbb{R}^n containing the origin	Conical hull of A	cone(A)
All binary relations on a set <i>X</i>	Transitive binary relations on <i>X</i>	Transitive closure of <i>A</i>	A^+
All words over an alphabet Σ	Languages containing the empty string that are closed under string concatenation	Kleene star of A	A*