Random regular digraphs:
Singularity and discrepancy

Nick Cook, UCLA

Conference on Stochastic Processes and their Applications
Universidad de Buenos Aires, 31 July 2014
Introduction

Invertibility of rrd matrices

Ideas of the proof

rrd matrix ensemble

Circular law universality class

rrd matrix ensemble

- n large, $d \in [1, n/2]$

\[
\mathcal{M}_d := \left\{ n \times n \text{ matrices, entries } \in \{0, 1\}, \text{ constraint: each row and column has } d \text{ 1s} \right\}
\]

$d = 1$: permutation matrices

General d: adjacency matrices of d-regular directed graphs.

- $M \in \mathcal{M}_d$ uniform random. “Random regular digraph (rrd) matrix”

Random matrix theory questions:

Is M invertible with high probability?

Limiting spectral distribution?

- non-Hermitian, discrete distribution, dependent entries.

N. Cook

Random regular digraphs: Singularity and discrepancy
Introduction

Invertibility of rrd matrices

Ideas of the proof

rrd matrix ensemble

Circular law universality class

rrd matrix ensemble

- n large, $d \in [1, n/2]$

$$\mathcal{M}_d := \left\{ n \times n \text{ matrices, entries } \in \{0, 1\}, \right.$$

$$\text{constraint: each row and column has } d \text{ 1s} \right\}$$

$d = 1$: permutation matrices

General d: adjacency matrices of d-regular directed graphs.

- $M \in \mathcal{M}_d$ uniform random. “Random regular digraph (rrd) matrix”

- Random matrix theory questions:

 Is M invertible with high probability?

 Limiting spectral distribution?

- non-Hermitian, discrete distribution, dependent entries.
Consider M_{\pm} having iid uniform ± 1 entries.

Q: Is M_{\pm} invertible with high probability?
A: Yes. $P(\det M_{\pm} = 0) \leq c^{-n}$ for some $c < 1$ (Kahn-Komlós-Szemerédi ’95). Subsequent improvements by Tao-Vu ’05, Bourgain-Vu-Wood ’09.

Q: What is the limiting spectral distribution?
A: The spectrum of M_{\pm} is governed by the circular law:

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i(\frac{1}{\sqrt{n}}M_{\pm})} \rightarrow \frac{1}{\pi} 1_{B_{\mathbb{C}}(0,1)} dxdy \quad a.s.$$

From Tao-Vu ’08 universality principle: the circular law holds for any ensemble with entries that are iid with finite second moment.
The circular law universality class
The circular law universality class

iid, finite 2nd moment (Tao-Vu '08)

- Bernoulli
- Ginibre
The circular law universality class

- iid, heavier tails (Bordenave, Caputo, Chafaï '10)
- iid, finite 2nd moment (Tao-Vu '08)
 - Bernoulli
 - Ginibre
The circular law universality class

iid, heavier tails
(Bordenave, Caputo, Chafaï '10)

iid, finite 2nd moment
(Tao-Vu '08)

- Bernoulli
- Ginibre

Circular law

Dependent entries?
The circular law universality class

iid, heavier tails
(Bordenave, Caputo, Chafaï '10)

iid, finite 2nd moment
(Tao-Vu '08)

- Bernoulli
- Ginibre

Circular law

- Uniform doubly-stoch.
 (Nguyen '12)

Dependent entries?
The circular law universality class

- iid, heavier tails (Bordenave, Caputo, Chafaï '10)
- iid, finite 2nd moment (Tao-Vu '08)
 - Bernoulli
 - Ginibre
 - Uniform doubly-stoch. (Nguyen '12)
 - Unconditional log-concave (Adamczak, Chafaï '13)

Dependent entries?
The circular law universality class

- iid, heavier tails (Bordenave, Caputo, Chafaï '10)
- iid, finite 2nd moment (Tao-Vu '08)
- Bernoulli
- Ginibre
- Uniform doubly-stoch. (Nguyen '12)
- Unconditional log-concave (Adamczak, Chafaï '13)
- Exchangeable array + moment hypothesis (Adamczak, Chafaï, Wolff '14)
- Dependent entries?
The circular law universality class

- iid, heavier tails (Bordenave, Caputo, Chafaï '10)
- iid, finite 2nd moment (Tao-Vu '08)
- Bernoulli
- Ginibre
- Exchangeable array + moment hypothesis (Adamczak, Chafaï, Wolff '14)
- Uniform doubly-stoch. (Nguyen '12)
- Unconditional log-concave (Adamczak, Chafaï '13)
- rrd matrix $d \to \infty$ (conjectured)

- Dependent entries?
The circular law universality class

- iid, heavier tails (Bordenave, Caputo, Chafaï '10)
- iid, finite 2nd moment (Tao-Vu '08)
- Bernoulli
- Ginibre
- Exchangeable array + moment hypothesis (Adamczak, Chafaï, Wolff '14)

Circular law

- Uniform doubly-stoch. (Nguyen '12)
- Unconditional log-concave (Adamczak, Chafaï '13)
- Dependent entries?

Oriented Kesten-McKay law

- (conjectured) \(d \to \infty \)
- \(d \) fixed

- Sum of \(d \) iid Haar unitaries (Basak, Dembo '12)
Invertibility

Proofs follow Girko’s *Hermitization* strategy.
- Requires lower bounds on $\sigma_n(M - zI)$ for $z \in \mathbb{C}$.
- Related problem: show $\sigma_n(M) > 0$, i.e. M is non-singular, whp.

Is the rrd matrix M invertible with high probability?
- $d = 1$: easy...
- $d = 2$?
 Exercise: M is *singular* a.a.s.!
- $3 \leq d \leq n/2$, unclear...
Main result

Theorem (C. ’14)

Assume \(n^{\frac{1}{2}+\epsilon} \ll_{\epsilon} d \leq \frac{n}{2} \) for \(\epsilon \in (0, \frac{1}{2}] \). Then

\[
P(\det M = 0) = O(d^{-c})
\]

for some \(c > 0 \) absolute.

Conjecture

There are constants \(C, c > 0 \) such that for any \(d \in [3, n/2] \),

\[
P(\det M = 0) \leq Cn^{-c}.
\]
Key ideas

1. Small ball estimate

2. Inject independence

3. Tools to avoid some “bad events”:
 - Separately rule out “structured” null vectors
 - Discrepancy properties of the digraph
Proofs of upper bounds on $\sigma_1(M) = ||M||_{op}$ reduce to an application of concentration of measure.

Proofs of lower bounds on $\sigma_n(M) = ||M^{-1}||_{op}^{-1}$ reduce to the application of anti-concentration or “small ball” estimates.

Theorem (Anti-concentration for random walks, Erdős ’40s)

Let $R = (\xi_1, \ldots, \xi_n)$ vector of iid uniform signs, and $x \in \mathbb{R}^n$. Then for any $a \in \mathbb{R}$,

$$P(R \cdot x = a) = P\left(\sum_{j=1}^{n} \xi_j x(j) = a\right) \ll |spt(x)|^{-1/2}$$

where $spt(x) := \{j : x(j) \neq 0\}$.

Nice hammer. Where is the nail?
Injecting independence

- Suppose $M \sim \mu$, non-product distribution, but enjoys several “local symmetries”.
- We want to bound $\mathbb{P}(P \text{ holds for } M)$.
- Form a coupled pair (M, \tilde{M}) of μ-distributed vectors, with

$$\tilde{M} = \Phi_\omega(M)$$

where Φ_ω is a random μ-preserving transformation.
- Now we can replace M with \tilde{M}:

$$\mathbb{P}(P \text{ holds for } M) = \mathbb{P}(P \text{ holds for } \tilde{M}) = \mathbb{E}\mathbb{P}(P \text{ holds for } \tilde{M}|M)$$

and proceed using only the randomness we’ve added in.
Where is the nail?

- Toy problem: want to bound
 \[P(R_1 \in \text{span}(R_3, \ldots, R_n)). \]
 - Conditional on \(R_3, \ldots, R_n \), pick \(u \in \text{span}(R_3, \ldots, R_n) \perp \) a unit vector.
 Then
 \[P(R_1 \in \text{span}(R_3, \ldots, R_n)) \leq P(R_1 \cdot u = 0). \]
- How is \(R_1 \) distributed under this conditioning?
Conditional on R_3, \ldots, R_n, the only randomness is in the choice of sets $Ex(1, 2), Ex(2, 1)$.

Let $\pi : Ex(1, 2) \to Ex(2, 1)$ uniform random bijection.

Conditional on π, independently resample the 2×2 minors $M_{(1,2) \times (j, \pi(j))}$.
Where is the nail?

Conditional on R_3, \ldots, R_n, the only randomness is in the choice of sets $Ex(1, 2), Ex(2, 1)$.

Let $\pi : Ex(1, 2) \rightarrow Ex(2, 1)$ uniform random bijection.

Conditional on π, independently resample the 2×2 minors $M_{(1,2) \times (j, \pi(j))}$.

\[
\begin{bmatrix}
1 & \cdots & 1 & 1 & 0 & \cdots & 1 & 0 & 1 & \cdots & 0 & 0 & \cdots \\
2 & \cdots & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & \cdots & 1 & 0 & \cdots \\
\vdots & & & & & & & & & & \vdots & & \vdots
\end{bmatrix}
\]
In the randomness of the resampling, $R_1 \cdot u$ is a random walk with steps $u(j) - u(\pi(j))$. (Found the nail!)

Key technical proposition: normal vectors u have small level sets.

Combining this fact with the randomness of π guarantees many nonzero steps.
Discrepancy properties

- For this to work, we need control on the codegree $|Co(1, 2)|$.
- Using a “reflection” coupling with Chatterjee’s method of exchangeable pairs for concentration of measure, can show codegrees are concentrated.
- Using this with another coupling, get discrepancy properties:

 For $A, B \subset [n]$ and $\varepsilon \geq 0$,

 $$\Pr \left(\left| \frac{e(A, B)}{|A||B|} - 1 \right| \geq \varepsilon \right) \leq 2 \exp \left(- \frac{c\varepsilon^2}{1 + \varepsilon} \frac{d}{n} |A||B| \right).$$
Thank you