Practice problems

1. Let $f : A \rightarrow B$ be a ring homomorphism and M, a flat A-module. Show that $B \otimes_A M$ is a flat B module.

2. A is reduced if its nilradical is trivial. Show that being reduced is a local property, i.e A is reduced iff A_m is reduced for each maximal ideal m of A. Is being an integral domain also a local property ?

3. Find a minimal primary decomposition of ideal (x^2) in $\mathbb{R}[x, y]/(x^2 + y^2 - 1)$.

4. Find a minimal primary decomposition of ideal $(x, y), (y, z)$ in $\mathbb{R}[x, y, z]$.
Try and try again. And then if needed, look up

1. Read up on what the Tor functor is. Then if M is an A-module, show that M is flat as an A module iff $\text{Tor}^A_n(M, N) = 0$ for all A modules N iff $\text{Tor}^A_1(M, N) = 0$ for all A modules N.

2. Problem 16 in Chapter 3 of Atiyah MacDonald (about faithful flatness)

Mandatory problems

1. Let $S = \{1, f, f^2, \ldots \}$ be a multiplicatively closed set of S. Show that $\text{Spec}(A_f) = \text{Spec}(S^{-1}A) \subseteq \text{Spec}(A)$ is the complement of $V((f))$.
 (Identify primes in A_f with their restrictions in A to get $\text{Spec}(A_f) \subseteq \text{Spec}(A)$.)

2. Show that $\text{Spec}(A)$ is Hausdorff iff $\text{Spec}(A)$ is T_1 (every singleton is closed) iff every prime ideal of A is maximal iff every $A/N(A)$ module is flat over $A/N(A)$. Here $N(A)$ is the nilradical of A

3. Let k be a field. Show that for each integer $1 \leq i \leq n$ and for each integer $m \geq 1$, $P_i = (x_1, x_2, \ldots, x_i)$ is prime in $k[x_1, x_2, \ldots, x_n]$ and P_i^m is primary.