CHEAT SHEET

Definition 1. If \(z = x + iy \) then \(e^z \) is defined to be the complex number \(e^x(\cos y + i \sin y) \).

Proposition 2 (De Moivre’s Formula). If \(n = 1, 2, 3, \ldots \) then
\[(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.\]

Definition 3. A domain is an open connected set.

Definition 4. A complex-valued function \(f \) is said to be analytic on an open set \(D \) if it has a derivative at every point of \(D \).

Theorem 5. If \(f(z) = u(x, y) + iv(x, y) \) is analytic in \(D \) then the Cauchy-Riemann equations
\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
\]
must hold at every point in \(D \).

Theorem 6 (The Fundamental Theorem of Algebra). Every nonconstant polynomial with complex coefficients has at least one zero in \(\mathbb{C} \).

Theorem 7. Given any complex number \(z \), we define
\[
\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.
\]

Definition 8. The principal value of the logarithm is defined as
\[
\text{Log } z := \text{Log } |z| + i \text{Arg } z.
\]

Theorem 9 (The ML-inequality). If \(f \) is continuous on the contour \(\Gamma \) and if \(|f(z)| \leq M \) for all \(z \) on \(\Gamma \) then
\[
\left| \int_{\Gamma} f(z) \, dz \right| \leq M \cdot \text{length}(\Gamma).
\]

Theorem 10 (Independence of Path). Suppose that the function \(f(z) \) is continuous in a domain \(D \) and has an antiderivative \(F \) throughout \(D \). Then for any contour \(\Gamma \) in \(D \) with initial point \(z_I \) and terminal point \(z_T \) we have
\[
\int_{\Gamma} f(z) \, dz = F(z_T) - F(z_I).
\]

Definition 11. A domain \(D \) is simply connected if one of the following (equivalent) conditions holds:
- every loop in \(D \) can be continuously deformed in \(D \) to a point.
- if \(\Gamma \) is any simple closed contour in \(D \) then \(\text{int}(\Gamma) \subseteq D \).

Theorem 12 (Cauchy’s Integral Theorem). If \(f \) is analytic in a simply connected domain \(D \) then
\[
\int_{\Gamma} f = 0 \quad \text{for all loops } \Gamma \subseteq D.
\]

Theorem 13 (Morera’s Theorem). If \(f \) is continuous in a domain \(D \) and if
\[
\int_{\Gamma} f = 0 \quad \text{for all loops } \Gamma \subseteq D
\]
then \(f \) is analytic in \(D \).
Theorem 14 (Cauchy’s (generalized) Integral Formula). If \(f \) is analytic inside and on the simple positively oriented loop \(\Gamma \) and if \(z \) is any point inside \(\Gamma \) then

\[
f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta
\]

for \(n = 1, 2, 3, \ldots \).

Theorem 15 (Liouville’s Theorem). The only bounded entire functions are the constant functions.

Theorem 16 (The Maximum Modulus Principle). A function analytic in a bounded domain and continuous up to and including its boundary attains its maximum modulus on the boundary.

Theorem 17 (The Taylor Series Theorem). If \(f \) is analytic in the disk \(|z - z_0| < R \) then the Taylor series

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n
\]

converges to \(f(z) \) for all \(z \) in the disk. Furthermore, the convergence is uniform in any closed subdisk \(|z - z_0| \leq R' < R \).

Definition 18. A point \(z_0 \) is called a zero of order \(m \) for \(f \) if \(f \) is analytic at \(z_0 \) and if \(f^{(n)}(z_0) = 0 \) for \(0 \leq n \leq m-1 \) but \(f^{(m)}(z_0) \neq 0 \).

Definition 19. If \(f \) has an isolated singularity at \(z_0 \) and if \(f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \) is its Laurent expansion around \(z_0 \) then

1. If \(a_n = 0 \) for all \(n < 0 \) then \(f \) has a removable singularity at \(z_0 \).
2. If \(a_{-m} \neq 0 \) for some \(m > 0 \) but \(a_n = 0 \) for all \(n < -m \) then \(f \) has a pole of order \(m \) at \(z_0 \).
3. If \(a_n \neq 0 \) for infinitely many negative \(n \) then \(f \) has an essential singularity at \(z_0 \).

Theorem 20 (Picard’s Theorem). A function with an essential singularity assumes every complex number, with possibly one exception, as a value in any neighborhood of this singularity.

Definition 21. If \(f \) has an isolated singularity at \(z_0 \) then the coefficient \(a_{-1} \) of \(1/(z - z_0) \) in the Laurent expansion of \(f \) around \(z_0 \) is called the residue of \(f \) at \(z_0 \).

Theorem 22 (The Residue Theorem). If \(\Gamma \) is a simple positively oriented loop and \(f \) is analytic inside and on \(\Gamma \) except at the points \(z_1, \ldots, z_n \) inside \(\Gamma \) then

\[
\frac{1}{2\pi i} \int_{\Gamma} f(z) \, dz = \sum_{k=1}^{n} \text{Res}(f; z_k).
\]

Theorem 23 (The Argument Principle). If \(f \) is analytic and nonzero at each point of a simple positively oriented loop \(\Gamma \) and is meromorphic inside \(\Gamma \) then

\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} \, dz = Z - P,
\]

where \(Z \) is the number of zeros of \(f \) inside \(\Gamma \) and \(P \) is the number of poles inside \(\Gamma \), counted with multiplicity.

Theorem 24 (Rouché’s Theorem). If \(f \) and \(g \) are analytic inside and on a simple loop \(\Gamma \) and if

\[
|f(z) - g(z)| < |f(z)| \quad \text{for all } z \text{ on } \Gamma
\]

then \(f \) and \(g \) have the same number of zeros (counting multiplicities) inside \(\Gamma \).
Final Exam Information

The final exam will be worth 40 total points, broken up in the following way:

15 points: Chapter 6 Quiz (3 questions)
15 points: Cumulative Quiz (3 questions very similar to exercises from HW 1–4)
10 points: Definitions / Theorems (See Cheat Sheet above)

To help you practice for the Chapter 6 Quiz portion, here are some exercises to do from Sec. 6.7:

(6.7) 1, 2, 3, 6, 7, 8

Practice Chapter 6 Quiz:

1. Compute the integral
 \[\int_{|z|=\pi} \frac{z}{\cos z - 1} \, dz. \]

2. With the aid of residues, verify the integral formula
 \[\int_0^\infty \frac{2x^2 - 1}{x^4 + 5x^2 + 4} \, dx = \frac{\pi}{4}. \]

3. Use Rouché’s Theorem to prove that the polynomial \(P(z) = z^5 + 3z^2 + 1 \) has exactly three zeros in the annulus \(1 < |z| < 2 \). **Hint:** prove that it has five zeros in \(|z| < 2 \) and two zeros in \(|z| < 1 \).