MATH 131A HOMEWORK 9

(1) Using the limit definition of the derivative, prove that the function

\[f(x) = \begin{cases}
 x^2 \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0, \\
 0 & \text{if } x = 0,
\end{cases} \]

is differentiable at \(x = 0 \). Hint: you should first guess what \(f'(0) \) is.

(2) Suppose that \(f \) is defined on an open interval \(I \) containing \(a \). Prove that \(f'(a) \) exists if and only if there is a function \(\varepsilon : I \to \mathbb{R} \) such that

\[f(x) - f(a) = (x - a)[f'(a) + \varepsilon(x)] \quad \text{and} \quad \lim_{x \to a} \varepsilon(x) = 0. \]

(For the \(\Leftarrow \) direction, you don’t know that \(f'(a) \) exists so this problem is saying: Assume that there is a function \(\varepsilon : I \to \mathbb{R} \) and a number \(m \) such that \(\lim_{x \to a} \varepsilon(x) = 0 \) and \(f(x) - f(a) = (x - a)[m + \varepsilon(x)] \). Show that \(f'(a) \) exists and that it equals \(m \).)

(3) Using the fact that \((\cos x)' = -\sin x\), prove that

\[|\cos x - \cos y| \leq |x - y| \]

for all \(x, y \in \mathbb{R} \). Hint: use the MVT.

(4) Suppose that \(f : \mathbb{R} \to \mathbb{R} \) satisfies \(|f(x) - f(y)| \leq (x - y)^2 \) for all \(x, y \in \mathbb{R} \). Prove that \(f \) is a constant function. Hint: show that \(f'(y) = 0 \) for all \(y \in \mathbb{R} \) by using the squeeze theorem and the definition of the derivative.

(5) Suppose that \(f \) and \(g \) are differentiable on \(\mathbb{R} \) and that \(f(0) = g(0) \) and \(f'(x) \leq g'(x) \) for all \(x \geq 0 \). Prove that \(f(x) \leq g(x) \) for all \(x \geq 0 \). Hint: consider \(h = g - f \).

EXTRA PRACTICE (DO NOT TURN THESE IN)

(1) Exercises 28.3, 28.7
(2) Exercises 29.1, 29.4, 29.7, 29.10, 29.11, 29.14, 29.17

THIS PROBLEM WON’T BE GRADED BUT I THINK IT’S COOL

Let \(f : \mathbb{R} \to \mathbb{R} \) be differentiable on \(\mathbb{R} \) and suppose that

\[s = \sup\{|f'(x)| : x \in \mathbb{R}\} < 1. \]

We will prove that there exists a point \(a \in \mathbb{R} \) such that \(f(a) = a \) (i.e. \(f \) has a fixed point).

(i) Pick any point \(a_1 \in \mathbb{R} \). For each \(n \geq 1 \) define \(a_{n+1} = f(a_n) \). So

\[a_2 = f(a_1), \quad a_3 = f(a_2) = f(f(a_1)), \ldots. \]

Prove that \((a_n) \) is a Cauchy sequence. Hint: use the MVT to show that

\[|a_{n+1} - a_n| \leq s|a_n - a_{n-1}|, \]

where \(s \) is the sup defined above.

(ii) Prove that there exists some \(a \in \mathbb{R} \) such that \(f(a) = a \). Hint: since \(f \) is differentiable on \(\mathbb{R} \), it is continuous on \(\mathbb{R} \).