(1) (a) Suppose that \(f \) is uniformly continuous on a bounded set \(S \). Prove that \(f \) is bounded on \(S \) (i.e. there exists a number \(M \) such that \(|f(x)| \leq M \) for all \(x \in S \)).

Hint: Suppose \(f \) isn't bounded, then use Bolzano-Weierstrass to construct a Cauchy sequence \((a_n) \) such that \(\lim f(a_n) = \pm \infty \), then derive a contradiction.

(b) Use (a) to prove that \(f(x) = 1/x^2 \) is not uniformly continuous on \((0, 1)\).

(2) A function \(f : X \to \mathbb{R} \) is called *Lipschitz* if there exists a number \(M > 0 \) such that

\[
\left| \frac{f(x) - f(y)}{x - y} \right| \leq M \quad \text{for all } x, y \in X.
\]

Show that if \(f : X \to \mathbb{R} \) is Lipschitz then it is uniformly continuous on \(X \).

(3) Suppose that \(f \) is continuous on \([0, \infty)\). Prove that if \(f \) is uniformly continuous on \([k, \infty)\) for some \(k \geq 0 \) then \(f \) is uniformly continuous on \([0, \infty)\).

(4) Let \(f(x) = \sqrt{x} \). Prove that \(f \) is uniformly continuous on \([0, \infty)\).

Hint: Prove that \(f \) is uniformly continuous on \([1, \infty)\) and use (3).

(5) Suppose that \(\lim_{x \to a^+} f(x) = \lim_{x \to a^+} h(x) = L \) and that

\[
f(x) \leq g(x) \leq h(x)
\]

for all \(x \) in \((a, b)\) for some \(b \). Use the \(\varepsilon-\delta \) definition to prove that \(\lim_{x \to a^+} g(x) = L \).

Hint: See Exam 1.

(6) Define \(f : \mathbb{R} \to \mathbb{R} \) by

\[
f(x) = \begin{cases}
0 & \text{if } x \in \mathbb{Q}, \\
x^2 & \text{if } x \notin \mathbb{Q}.
\end{cases}
\]

This function is similar to a function we’ve seen before; it is continuous at \(x = 0 \) and discontinuous everywhere else. Prove that \(f \) is differentiable at \(x = 0 \).

So you can work on this problem before we cover derivatives: We say \(f \) is differentiable at \(a \) if the limit

\[
\lim_{x \to a} \frac{f(x) - f(a)}{x - a}
\]

exists. *Hint:* I personally find the \(\varepsilon-\delta \) definition easier for this problem.
Extra practice (do not turn these in)

(1) Exercises 19.1, 19.2, 19.5, 19.9, 19.10

(2) Exercises 20.1, 20.2, 20.4, 20.11, 20.16