An infinity of Ramanujan graphs
After Adam Marcus, Daniel Spielman, and Nikhil Srivastava

Andreas Næs Aaserud
Department of Mathematics,
UCLA

4 November 2013
Outline

1. Introduction and setup
2. Prerequisites
3. Proof of the main theorem
We will prove the following breakthrough result of the paper *Interlacing Families I: Bipartite Ramanujan graphs of all degrees*:

Theorem (Marcus-Spielman-Srivastava '13)

There exists an infinite family of d-regular Ramanujan graphs for every $d \geq 3$.

Note: Prior to this paper, the existence of such a family was only known for d of the form $1 + q$, where q is a prime power.

Definition

Let G be a graph with adjacency matrix A. If G is d-regular and

$$\sigma(G) := \sigma(A) \subseteq \{\pm d\} \cup [-2\sqrt{d - 1}, 2\sqrt{d - 1}],$$

then we call G a **Ramanujan graph**.

Note: All d-regular graphs G satisfy $d \in \sigma(G)$.
Moreover, if G is bipartite then $\sigma(G) = -\sigma(G)$. (Indeed, the adjacency matrix of such a graph is of the form

$$
\begin{pmatrix}
0 & A \\
A^T & 0
\end{pmatrix}.
$$

Thus if $(x, y)^T$ is an eigenvector with eigenvalue λ, then $(x, -y)^T$ is an eigenvector with eigenvalue $-\lambda$.)

Note: The range of eigenvalues in the definition of a Ramanujan graph cannot be shrunk if one hopes to construct an infinite family of such graphs. Indeed it was proved by Alon and Boppana in the mid-80s that for every $\epsilon > 0$, every sufficiently large d-regular graph has an eigenvalue λ such that $2\sqrt{d-1} - \epsilon \leq |\lambda| < d$.

Andreas Næs Aaserud

An infinity of Ramanujan graphs
Let $G = (V, E)$ be a graph. A 2-lift of G is a graph

1. that has two vertices $f(v) = \{v_0, v_1\}$ (called the fiber over v) for each vertex v of V, and

2. that, for each edge $(u, v) \in E$ with $f(v) = \{v_0, v_1\}$ and $f(u) = \{u_0, u_1\}$, contains exactly one of the following two pairs of edges:

 $\{(u_0, v_0), (u_1, v_1)\}$ or $\{(u_0, v_1), (u_1, v_0)\}$

\(\ast\)

Note: Given a graph G, the 2-lifts of G are in 1–1 correspondence with so-called **signings** of (the edges of) G, i.e., maps $E \rightarrow \{\pm 1\}$: The sign of an edge corresponds to the choice \(\ast\).
A lemma of Bilu and Linial

We associate to each signing s the signed adjacency matrix A_s.

Lemma (Bilu-Linial ’06)

Let s be a signing of a graph $G = (V, E)$. The spectrum of the 2-lift corresponding to s is the union of those of A and A_s, counting multiplicities.

Proof. The adjacency matrix of the 2-lift \tilde{G} corresponding to s is of the form

$$\tilde{A} = \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix},$$

where A_1 is the adjacency matrix of $(V, s^{-1}(1))$ and A_2 is the adjacency matrix of $(V, s^{-1}(-1))$. (Just order the vertices of \tilde{G} as $v_1^1, \ldots, v_n^1, v_1^2, \ldots, v_n^2$, where $\{v_j^1, v_j^2\}$ is the fiber over $v_j \in V$.)
Moreover, $A = A_1 + A_2$ and $A_s = A_1 - A_2$, because $s^{-1}(1)$ and $s^{-1}(-1)$ are disjoint sets of edges. Now, if v is an eigenvector for A corresponding to an eigenvalue λ, then

$$\tilde{A}(v, v)^T = (Av, Av)^T = \lambda(v, v)^T$$

and, if v is an eigenvector for A_s corresponding to an eigenvalue μ, then

$$\tilde{A}(v, -v)^T = (A_s v, -A_s v)^T = \mu(v, -v)^T.$$

By dimension considerations, we get in this way all of the eigenvalues of \tilde{A} with the desired multiplicities. (Note that we are dealing with diagonalizable matrices!) □
Matching polynomials

Given a graph G, denote by m_i the number of matchings in G with i edges, i.e., collections of i non-adjacent edges in G. Denote the number of vertices by n.

Definition (Heilmann-Lieb ’72)

The matching polynomial μ_G is the polynomial

$$\mu_G(x) = \sum_{i \geq 0} (-1)^i m_i x^{n-2i}.$$

The authors use the following theorem, whose proof we skip:

Theorem (Heilmann-Lieb ’72)

*Let G be a graph. Then $\mu_G(x)$ has only real roots. Moreover, if G has maximum degree d, then all roots of $\mu_G(x)$ have absolute value at most $2\sqrt{d - 1}$.***
Overview

Let G be a d-regular bipartite Ramanujan graph with adjacency matrix A.

1° We will first prove that

$$E_s[f_s(x)] = \mu_G(x),$$

where $f_s(x)$ is the characteristic polynomial of A_s and s varies through all possible signings of G.

2° We next prove that $\{f_s(x)\}_s$ is an interlacing family. It will follow that there exists a signing s such that every root of $f_s(x)$ is at most the largest root of $E_s[f_s(x)]$.

3° By the result of Heilmann-Lieb and step 1°, there exists a 2-lift of G that is also a d-regular bipartite Ramanujan graph. Finally, if we take appropriate successive 2-lifts of a complete d-regular bipartite graph, we get an infinite family of d-regular (bipartite) Ramanujan graphs.
Step 1: Expected characteristic polynomial

We are given a finite graph $G = (V, E)$ and number the vertices $1, \ldots, n$ and the edges $1, \ldots, m$. We also identify edges with pairs (i, j) of vertices.

Theorem

$$E_{s \in \{\pm 1\}^m}[f_s(x)] = \mu_G(x).$$

Proof. The theorem will follow from three simple observations:

1°. The number of k-matchings (i.e., matchings with k edges) equals the number of permutations of the vertices that are products of k disjoint 2-cycles, where each 2-cycle corresponds to an edge.
Step 1: Expected characteristic polynomial, cont.

2°. In the expression

\[E_{s \in \{\pm 1\}^m}[f_s(x)] = \sum_{\sigma \in \Sigma_n} \text{sgn}(\sigma) E_{s \in \{\pm 1\}^m} \left[\prod_{i=1}^{n} (xI - A_s)_{i,\sigma(i)} \right], \]

we need only sum over products of disjoint 2-cycles. (Indeed, let \(\sigma \in \Sigma_n \) contain a cycle of length at least 3, say mapping \(i_1 \) to \(i_2 \) and \(i_2 \) to \(i_3 \). Then the product in the expression above contains the factors \(s_{i_1,i_2} \) and \(s_{i_2,i_3} \) exactly once. Independence implies

\[E_{s \in \{\pm 1\}^m} \left[\prod_{i=1}^{n} (xI - A_s)_{i,\sigma(i)} \right] = 0.) \]
Step 1: Expected characteristic polynomial, cont.

3°. Given $k \in \mathbb{N}$ and a permutation σ that is the product of k disjoint 2-cycles, we have, independently of $s \in \{\pm 1\}^m$, that

$$\prod_{i}(A_s)_{i,\sigma(i)} = \begin{cases} 1 & \text{if all of the 2-cycles correspond to edges} \\ 0 & \text{otherwise} \end{cases},$$

where the product runs over all i that are not fixed by σ.

Finally, with $m_k = \#\{k\text{-matchings}\}$, these observations imply that

$$\mathbb{E}_{s \in \{\pm 1\}^m}[f_s(x)] = \sum_k (-1)^k x^{n-2k} \sum_{\sigma} \mathbb{E}_{s \in \{\pm 1\}^m} \left[\prod_{i}(A_s)_{i,\sigma(i)} \right]$$

$$= \sum_k (-1)^k x^{n-2k} m_k = \mu_G(x). \qed$$
Method of interlacing polynomials

We will now describe the general technique that allowed the authors to prove their result.

Definition

We say that a polynomial $g(x) = a \prod_{i=1}^{n-1} (x - \alpha_i)$ interlaces a polynomial $f(x) = b \prod_{i=1}^{n} (x - \beta_i)$ if $\alpha_i, \beta_i, a, b \in \mathbb{R}$ and

\[
\beta_1 \leq \alpha_1 \leq \beta_2 \leq \cdots \leq \alpha_{n-1} \leq \beta_n.
\]

Lemma

Let $f_1, \ldots, f_k \in \mathbb{R}[x]$ be polynomials of the same degree with positive leading coefficients. If they have a common interlacing, then there exists an i such that the largest root of f_i is at most the largest (real) root of $\sum_{j=1}^{k} f_j$.
Method of interlacing polynomials, cont.

Proof of the lemma. Let g be a polynomial that interlaces each f_i, and denote the largest root of g by α.

As f_j has positive leading coefficient and any root of f_j strictly to the right of α has multiplicity 1, $f_j(\alpha) \leq 0$ for all j. Thus

$$
\sum_{j=1}^{k} f_j(\alpha) \leq 0.
$$

It follows that the largest real root β of $\sum_{j=1}^{k} f_j$ satisfies $\beta \geq \alpha$. Hence $f_i(\beta) \geq 0$ for some i so that the largest root of f_i lies in $[\alpha, \beta]$, because f_i has exactly one root that is at least α. □
Method of interlacing polynomials, cont.

Definition

Let S_1, \ldots, S_m be finite sets and let, for every $(s_1, \ldots, s_m) \in S_1 \times \cdots \times S_m$, $f_{s_1,\ldots,s_m}(x)$ be a real-rooted polynomial of degree n with positive leading coefficient. Given $(s_1, \ldots, s_k) \in S_1 \times \cdots \times S_k$, s_{k+1}, \ldots, s_m.

\[
f_{s_1,\ldots,s_k} := \sum_{(s_{k+1},\ldots,s_m)\in S_{k+1} \times \cdots \times S_m} f_{s_1,\ldots,s_m}.
\]

\[
f_{\emptyset} := \sum_{(s_1,\ldots,s_m)\in S_1 \times \cdots \times S_m} f_{s_1,\ldots,s_m}.
\]

We say that the family \(\{f_{s_1,\ldots,s_m}(x)\}_{(s_1,\ldots,s_m)\in S_1 \times \cdots \times S_m} \) is interlacing if, given $0 \leq k \leq m - 1$ and $(s_1, \ldots, s_k) \in S_1 \times \cdots \times S_k$, the polynomials \(\{f_{s_1,\ldots,s_k,t}(x)\}_{t\in S_{k+1}} \) have a common interlacing.
The following theorem follows immediately from the lemma.

Theorem

If \(\{f_{s_1,\ldots,s_m}(x)\}_{(s_1,\ldots,s_m)\in S_1\times\cdots\times S_m} \) is an interlacing family, then there exists \((s_1,\ldots,s_m)\in S_1\times\cdots\times S_m\) such that the largest root of \(f_{s_1,\ldots,s_m}(x)\) is at most the largest (real) root of \(f_\emptyset\).

In the proof that the family of characteristic polynomials \(f_s(x)\) is an interlacing family, we will use the following lemma (cf. Fisk ’08).

Lemma

Let \(f(x)\) and \(g(x)\) be (monic) real-rooted polynomials of degree \(n\) such that, for all \(\lambda \in [0,1]\), the polynomial \(\lambda f + (1-\lambda)g\) has \(n\) real roots. Then \(f(x)\) and \(g(x)\) have a common interlacing.
Real-rooted polynomials: Towards Step 2 of the proof

We will next prove the following theorem, from which the main result will follow easily.

Theorem

Let $p_1, \ldots, p_m \in [0, 1]$ be given. Then the polynomial

$$
\sum_{s \in \{\pm 1\}^m} \left(\prod_{i: s_i = 1} p_i \right) \left(\prod_{i: s_i = -1} (1 - p_i) \right) f_s(x)
$$

is real-rooted.

Note: A polynomial over \mathbb{R} is said to be real-rooted if it has no non-real roots.
Real-rooted polynomials, cont.

We will use the notion of real stability:

Definition

Let $f \in \mathbb{C}[z_1, \ldots, z_n]$ be given. We say that f is **stable** if f has no zeros in \mathbb{H}^n, where $\mathbb{H} \subset \mathbb{C}$ is the open upper half plane. We say that f is **real stable** if f is stable and has real coefficients.

Remarks:

1° If f and g are (real) stable, then so is $f \otimes g$.

2° By Hurwitz’ theorem from multivariate complex analysis, if $f \in \mathbb{C}[z_1, \ldots, z_n]$ is (real) stable and $c \in \mathbb{R}$, then $f(z_1, \ldots, z_{n-1}, c) \in \mathbb{C}[z_1, \ldots, z_{n-1}]$ is (real) stable as well.

3° A univariate real polynomial is real stable if and only if it is real-rooted.
We will need the following result:

Proposition (Lieb-Sokal ’81)

Assume that \(f(z_1, \ldots, z_n) + yg(z_1, \ldots, z_n) \in \mathbb{C}[z_1, \ldots, z_n, y] \) is real stable and has degree at most 1 in \(z_j \). Then \(f(z_1, \ldots, z_n) - \partial_j g(z_1, \ldots, z_n) \) is real stable.

Note: In order to prove this, it suffices to prove the statement with “real stable” replaced by “stable”. We follow Wagner ’11.

Lemma

Let \(f, g \in \mathbb{C}[z_1, \ldots, z_m] \) and assume that \(f \) is stable. Then \(g(z) + yf(z) \) is stable if and only if \(\Im(g(z)/f(z)) \geq 0 \) for all \(z \in \mathbb{H}^m \).
Real-rooted polynomials, cont.

Proof of the lemma. Assume that $g(z) + yf(z)$ is stable and let $z \in \mathbb{H}^m$ be given. Then $f(z) \neq 0$ and we can find $z_0 \in \mathbb{C}$ such that $g(z) + z_0 f(z) = 0$. As $g(z) + yf(z)$ is stable,

$$\Im \left(\frac{g(z)}{f(z)} \right) = -\Im(z_0) \geq 0.$$

Conversely, if $\Im(g(z)/f(z)) \geq 0$ for all $z \in \mathbb{H}^m$ and $g(z) + z_0 f(z) = 0$ for some $z_0 \in \mathbb{C}$ and $z \in \mathbb{H}^m$, then

$$\Im(z_0) = -\Im \left(\frac{g(z)}{f(z)} \right) \leq 0.$$

Thus $g(z) + yf(z)$ has no zeros in \mathbb{H}^{m+1}, i.e., is stable. \qed
Real-rooted polynomials, cont.

Proof of the proposition. Assume that $f(z) + yg(z)$ is stable and has degree at most 1 in z_1. Writing $f(z) = \sum a_iz^i$, we get

$$
yf(z_1 - y^{-1}, z_2, \ldots, z_m) = \sum_{i_1=0} a_1yz^i + \sum_{i_1=1} a_1(yz^i - z_2^{i_2} \cdots z_m^{i_m}) = -\partial_1 f(z) + yf(z).
$$

As $-y^{-1} \in \mathbb{H}$ whenever $y \in \mathbb{H}$, this polynomial is stable. By the lemma,

$$\Im \left(\frac{g(z) - \partial_1 f(z)}{f(z)} \right) = \Im \left(\frac{g(z)}{f(z)} \right) + \Im \left(\frac{-\partial_1 f(z)}{f(z)} \right) \geq 0$$

for all $z \in \mathbb{H}^m$. Hence $g - \partial_1 f + yf$ is stable. The proof is completed by setting $y = 0$. □
Real-rooted polynomials, cont.

Corollary

Assume \(f(z_1, \ldots, z_n) \) and \(t(w_1, \ldots, w_m) \) are (real) stable, where \(m \leq n \) and both polynomials have degree at most 1 in the variables \(z_j, w_j \) for \(j = 1, \ldots, m \). Then the polynomial

\[
t (−∂_1, \ldots, −∂_m) f(z_1, \ldots, z_n)
\]

is (real) stable.

Proof. If \(m = 1 \) then \(t(w_1) = \alpha + \beta w_1 \) so that \(\alpha f(z) + y \beta f(z) = t(y)f(z) \) is stable. Thus \(t(−∂_1)f(z) = \alpha f(z) − \beta ∂_1 f(z) \) is stable. If \(2 \leq m \leq n \), then \(t(−∂_1, \ldots, −∂_{m−1}, y)f(z) = t(−∂_1, \ldots, −∂_{m−1}, 0)f(z) + y(∂_m t)(−∂_1, \ldots, −∂_{m−1}) f(z) \) is stable for every \(y \in \mathbb{H} \) (by induction). Vary \(y \) to finish proof. \(\square \)
Real-rooted polynomials, cont.

Proposition (Borcea-Brändén ’08)

Let A_1, \ldots, A_m be positive semidefinite matrices. Then $\det[z_1 A_1 + \cdots + z_m A_m]$ is a real stable polynomial.

Proof. By Hurwitz’ theorem, we may assume that A_1 is invertible. Moreover, it is clear that the polynomial has real coefficients.

Assume for contradiction that the polynomial has a zero $(z_1, \ldots, z_m) \in \mathbb{H}^m$. Write $z_j = \beta_j + i\lambda_j$, where $\lambda_j > 0$ and $\beta_j \in \mathbb{R}$. Put $P = \lambda_1 A_1 + \cdots + \lambda_m A_m$ and $Q = \beta_1 A_1 + \cdots + \beta_m A_m$. Then

$$0 = \det(Q + iP) = \det(P) \det(P^{-1/2} QP^{-1/2} + il),$$

i.e., $-i \in \sigma(P^{-1/2} QP^{-1/2})$, contradicting the fact that Q is self-adjoint. □
Let $a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{R}^n$ and $p_1, \ldots, p_m \in [0, 1]$ be given. Then the polynomial $P(x) =$

$$
\sum_{S \subseteq [m]} \left(\prod_{i \in S} p_i \right) \left(\prod_{i \notin S} (1 - p_i) \right) \det \left[xI + \sum_{i \in S} a_i a_i^T + \sum_{i \notin S} b_i b_i^T \right]
$$

is real-rooted.

Proof. Define a polynomial Q of $2m + 1$ variables by

$$Q(x, u_1, \ldots, u_m, v_1, \ldots, v_m) = \det \left[xI + \sum_{i \in S} u_i a_i a_i^T + \sum_{i \notin S} v_i b_i b_i^T \right].$$

It follows from the previous proposition that Q is real stable.
Real-rooted polynomials, cont.

Note that the degree of Q in each of the variables u_j, v_j is at most 1. (It suffices to show this for the variable u_1. As $a_1a_1^T$ is a rank 1 symmetric matrix, it follows that, as a function of u_1 only, Q is of the form

$$\det[u_1a_1a_1^T + B] = \det[u_1E_{11}(\alpha) + B'],$$

which is a polynomial of degree 1 by definition of \det.)

Put $T_i = t_i(-\partial_u^i, -\partial_v^i)$, where $t_i(u_i, v_i) = 1 - p_i u_i - (1 - p_i) v_i$ is real stable. Then the corollary above implies that the operator

$$\prod_{i=1}^m T_i = \sum_{S, T \subseteq [m]} \left(\prod_{i \in S} p_i \right) \left(\prod_{i \in T} (1 - p_i) \right) \partial_u^S \partial_v^T$$

preserves the real stability of Q.
Finally, as substitution of real numbers preserves real stability, we get that the univariate polynomial

\[\hat{P}(x) = \left(\sum_{S, T \subseteq [m]} \left(\prod_{i \in S} p_i \right) \left(\prod_{i \in T} (1 - p_i) \right) \partial_u^S \partial_v^T Q(x, u, v) \right) \bigg|_{u_1 = \cdots = u_m = 0}^{v_1 = \cdots = v_m = 0} \]

is real stable, hence real-rooted.

We claim that \(P = \hat{P} \). We will show this by comparing coefficients. For this, we will need the formula

\[\partial_u \det(u a a^T + B) = \det(aa^T + B), \]

valid for any \(a \in \mathbb{R}^m \) and \(B \in \mathbb{M}_m \).
Real-rooted polynomials, cont.

As the only terms that appear in $\hat{P}(x)$ are the ones that contain exactly the variables with respect to which we are differentiating, we get that the coefficient of x^{d-k} in $\hat{P}(x)$ is

$$\sum_{|R|+|W|=k \atop R \cap W = \emptyset} \left(\prod_{i \in R} p_i \right) \left(\prod_{i \in W} (1 - p_i) \right) \det \left[\sum_{i \in R} a_i a_i^T + \sum_{i \in W} b_i b_i^T \right].$$

On the other hand, for $S \subseteq [m]$, “Cauchy-Binet formula” implies

$$\det \left[xI + \sum_{i \in S} a_i a_i^T + \sum_{i \notin S} b_i b_i^T \right]$$

$$= \sum_{k=0}^d x^{d-k} \sum_{|T|=k} \det \left[\sum_{i \in T \cap S} a_i a_i^T + \sum_{i \in T \setminus S} b_i b_i^T \right].$$
Thus

\[P(x) = \sum_{k=0}^{d} x^{d-k} \sum_{S \subseteq [m]} \left(\prod_{i \in S} p_i \right) \left(\prod_{i \notin S} (1 - p_i) \right) \]

\[\times \sum_{|T|=k} \det \left[\sum_{i \in T \cap S} a_i a_i^T + \sum_{i \in T \setminus S} b_i b_i^T \right] . \]

Note also that, e.g. by induction on \([m] \setminus T|,\]

\[\sum_{Q \subseteq [m] \setminus T} \prod_{i \in Q} p_i \prod_{i \in ([m] \setminus T) \setminus Q} (1 - p_i) = 1. \]
Real-rooted polynomials, cont.

Now we can write the coefficient of x^{d-k} in $P(x)$ as

$$\sum_{|T|=k} \sum_{R \subseteq T} \det \left[\sum_{i \in R} a_i a_i^T + \sum_{i \in T \setminus R} b_i b_i^T \right]$$

$$\times \sum_{Q \subseteq [m] \setminus T} \left(\prod_{i \in Q \cup R} p_i \right) \left(\prod_{i \in ([m] \setminus Q) \setminus R} (1 - p_i) \right)$$

$$= \sum_{|T|=k} \sum_{R \subseteq T} \det \left[\sum_{i \in R} a_i a_i^T + \sum_{i \in T \setminus R} b_i b_i^T \right] \left(\prod_{i \in R} p_i \right) \left(\prod_{i \in T \setminus R} (1 - p_i) \right)$$

$$= \sum_{|R| + |W|=k} \left(\prod_{i \in R} p_i \right) \left(\prod_{i \in W} (1 - p_i) \right) \det \left[\sum_{i \in R} a_i a_i^T + \sum_{i \in W} b_i b_i^T \right].$$

□
Real-rooted polynomials, cont.

Theorem

Let \(p_1, \ldots, p_m \in [0, 1] \) be given. Then the polynomial

\[
\sum_{s \in \{\pm 1\}^m} \left(\prod_{i : s_i = 1} p_i \right) \left(\prod_{i : s_i = -1} (1 - p_i) \right) f_s(x)
\]

is real-rooted.

Proof. Let \(d \) be the maximum degree of \(G \). We will show that the polynomial

\[
Q(x) = \sum_{s \in \{\pm 1\}^m} \left(\prod_{i : s_i = 1} p_i \right) \left(\prod_{i : s_i = -1} (1 - p_i) \right) \det(xl + dl - A_s)
\]

has only real roots.
Denoting by e_u the standard basis vector indexed by the vertex u,

$$dI - A_s = \sum_{(u,v) \in E} (e_u - e_v)(e_u - e_v)^T + \sum_{(u,v) \in E} (e_u + e_v)(e_u + e_v)^T + D,$$

where $D = \sum_{u \in V} d_u e_u e_u^T$ is the diagonal matrix with entries $d_u = d - \deg(u)$. Setting $a_{uv} = e_u - e_v$ and $b_{uv} = e_u + e_v$,

$$Q(x) = \sum_{s \in \{\pm 1\}^m} \left(\prod_{i : s_i = 1} p_i \right) \left(\prod_{i : s_i = -1} (1 - p_i) \right) \times \det \left[xI + \sum_{u \in V} d_u e_u e_u^T + \sum_{(u,v) \in E} a_{uv} a_{uv}^T + \sum_{(u,v) \in E} b_{uv} b_{uv}^T \right].$$
Identify each $s \in \{\pm 1\}^m$ with the set $\{i \in [m] : s_i = 1\}$ and put $p_u = 1$ for each $u \in V$. Then it is clear that the aforementioned polynomial is of the same form as the one in the statement of the previous theorem (restated below). Thus it is real-rooted.

Theorem

Let $a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{R}^n$ and $p_1, \ldots, p_m \in [0, 1]$ be given. Then the polynomial $P(x) =$

$$
\sum_{S \subseteq [m]} \left(\prod_{i \in S} p_i \right) \left(\prod_{i \notin S} (1 - p_i) \right) \det \left[xI + \sum_{i \in S} a_i a_i^T + \sum_{i \notin S} b_i b_i^T \right]
$$

is real-rooted.
Conclusion of Step 2: $\{f_s(x)\}_{s \in \{\pm 1\}^m}$ is interlacing

Theorem

The family $\{f_s(x)\}_{s \in \{\pm 1\}^m}$ is interlacing.

Proof. Let $0 \leq k \leq m - 1$, $(s_1, \ldots, s_k) \in \{\pm 1\}^k$, and $\lambda \in [0, 1]$ be given. We must show that the polynomial

$$
\lambda f_{s_1, \ldots, s_k, 1}(x) + (1 - \lambda)f_{s_1, \ldots, s_k, -1}(x)
$$

is real-rooted. But this follows easily from the previous theorem with $p_1 = (1 + s_1)/2$, \ldots, $p_k = (1 + s_k)/2$, $p_{k+1} = \lambda$, and $p_{k+2} = \cdots = p_m = 1/2$. \qed
Steps 3 and 4: Wrapping up the proof

By applying the fact that \(\{ f_s(x) \}_{s \in \{ \pm 1 \}^m} \) is interlacing, we get immediately from the theorem of Heilmann-Lieb concerning the roots of the matching polynomial \(\mu_G(x) \) that

Corollary

Let \(G \) be a \(d \)-regular bipartite graph with adjacency matrix \(A \). Then \(G \) has a signing \(s \) such that every eigenvalue of \(A_s \) is at most \(2\sqrt{d - 1} \). Thus, if \(G \) is a Ramanujan graph, so is the 2-lift associated to \(s \).

Corollary

Let \(d \geq 3 \) be given. Then there is an infinite family of \(d \)-regular bipartite Ramanujan graphs.

Proof. Start with a complete graph and take successive 2-lifts.
Main reference:

Other references:

