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ABSTRACT. It has long been a part of the “folklore” associated with the theory of Type
IIT von Neumann algebras that the (Type Il.;) core which arises in the crossed product
decompostion of an arbitrary Type III von Neumann algebra M is, in fact, a canonical object.
This work demonstrates that it is possible to construct the core M in such a way that it no
longer depends on one’s choice of weight. Moreover, we demonstrate that the assignment
M — M is in fact functorial. This, in turn, leads to a natural extension of the Flow of
Weights, this time applicable to the whole core (and not just its center), which we call the
Quantum Flow of Weights.

Additionally, we derive a notion of LP-spaces which can also be associated to each von Neu-
mann algebra. These agree with all the standard definitions of non-commutative LP-spaces
which appear in the literature. Finally, the naturality of the core construction can be used to
enhance and simplify the definition of the characteristic square of a factor, and to introduce
the notion of local characteristic square. This enables us to answer completely a longstanding
open question, first posed in the original work on the flow of weights by Connes and Takesaki,
concerning the extended modular automorphisms.
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§0. Introduction

In a recent work of Katayama, Sutherland and Takesaki [KtST], it was shown that to
every factor M there corresponds canonically a nine term exact square of groups, called
the characteristic square of M
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The construction of the characteristic square depends heavily on the functoriality of the
core {M,R,0,7} of a factor M. Unfortunately, the construction presented therein of a
functorial core was rather convoluted. But the beauty of the above characteristic square,
and its usefulness, make us wonder if there is a more intrinsic way to associate a core to
each factor. The main purpose of this paper is to establish a natural construction of the
core.

The theory of von Neumann algebras is often viewed as a non-commutative extension of
measure theory. A key ingredient of non-commutative integration is modular theory, which
yields the modular automorphism groups. The modular condition can then be summarized
by means of

p(zy) = o(yo?(x)) (0.1)

for a faithful semi-finite normal weight ¢ on M and sufficiently many x and y in M. Further,
we adopt a notation of physicists by writing (pz) for ¢(z), and accept the convention that
0% = o?, (2)p® for any a € C and for those z € M that the above expression makes
sense. Continuing in this manner, we identify ¢* = with (D¢ : Dv)_;, for any pair of
faithful semi-finite normal weights ¢ and ¢ on M; hence, we may “generalize” (0.1):

(Pl 10Ty O Tn) = (PR Th - P T Ty TR (0.2)

Here, >0 ,a; =1, {¢1, -+ ,pn} is an n-tuple of faithful semi-finite normal weights on M
and the z; are those elements of M such that the both sides of the above “make sense.”
In the case where o1 = @2 = -+ = ¢, = p, (0.2) is known as the Araki-Miyata multiple
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KMS condition, [AM]. This has motivated us to explore further the algebraic system that
M and the symbols ¢*, a € C, generate, a subject which has also been investigated by S.
Yamagami [Y].

In real analysis, it has long been known that, for p,q¢,r > 1 with ]lj + % = %, if f €

LP(X,p) and ¢ € LY X, p) (with {X,u} a o-finite measure space), then fg € L"(X, u)

and

IFgll- < 11Fllpllgll4

If we set o = %,ﬁ = % and write M, M? and M°+# for L?,L? and L", then the above

can be rephrased as
MeM? C M and || fgllars < [ Fllallglls

provided 0 < a,3,a + f < 1. This serves as a kind of a “grading” of the algebra. The
theory of LP —spaces has been successfully generalized to the non-commutative setting by
several authors. But the most relevant to us is the canonical construction of LP—spaces
associated with any (o-finite) von Neumann algebra M due to H. Kosaki, [K]|. Pursuing

the line suggested by the above observation, we write 1\4%(3\/[) for the canonical L?(M) of
Kosaki and then consider the complexification of the parameter « to obtain something to
be written as M(t) which should correspond to the purely imaginary value oo = #t. It turns
out that each M(t) can be shown to be isometrically isomorphic to M as a Banach space
and the family {M(¢) : ¢+ € R} has a multiplicative structure,

M(s)M(t) C M(s +1), s, € R;

and a conjugation M(s)* = M(—s) with M(0) = M. This leads naturally to the construc-
tion of an involutive Banach algebra bundle of the kind first introduced by Fell [F|. From
this, we can proceed to the ”cross-section” von Neumann algebra 3%, i.e., the core of M.
This core turns out to be naturaly isomorphic to the crossed product M x,. R of M by
the modular automorphism group ¢¥ of any faithful semi-finite normal weight ¢ on M.

In the literature, there have been a number of claims of a canonical construction of the
core M of a von Neumann algebra M. Van Daele, [VD], and Woronowicz, [W], for example,
both have made such assertions. However, these have merely been observations which
follow from the fact that the crossed product von Neumann algebras M x50 R 2 M x4 R
under a natural isomorphism for any pair ¢, ¥ of faithful semi-finite normal weights. Every
construction in the past had to, at some point, choose a faithful semi-finite normal weight
or state. This is not the same as the canonical construction. Really, the only canaonical
construction available so far was the one given by Katayama, Sutherland and Takesaki,
and has already been alluded to.

The construction of the canonical core M involves the set 24(M) of all faithful semi-
finite normal weights on M, as does the flow of weights. The dual action {6; : t € R}
is then simply the one corresponding to multiplication by the positive scalar e™°, s € R,
applied to each semi-finite normal weight ¢ on M; this is instantly recognized as the flow
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of weights. The difference is that in the flow of weights the carrier algebra of the flow
corresponds to equivalence classes of semi-finite normal weights, i.e., to orbits of semi-
finite normal weights under the inner automorphism group Int(M), while in the present
case two semi-finite normal weights are not identified but rather connected by the Connes
cocycle derivative. This motivates us to call the system {M,R, 6,7} the quantum flow of
weights.

The advantage of the quantum flow of weights construction over the crossed product
M Xy R comes from the fact that each faithful semi-finite normal weight appears on
the equal footing in the core, i.e., there is nothing involved in switching attention from
one semi-finite normal weight to another; all that appears is the notational change from
@' to 1. The information carried by the weight ¢ is then encoded in the one parameter
unitary group {p' : t+ € R} and therefore in the abelian subalgebra D¥ = {x" : t € R}"VC,
with € the center of the core (i.e., the “classical” carrier algebra of the flow of weights).
This in turn gives rise to another (smaller) nine term exact square of abelian groups,
LCSq,, to be called the local characteristic square of ¢; this local square is equivariant for
© € Wo(M) relative to the action of Aut(M). Particularly satisfying is the fact that the
middle horizontal short exact sequence splits equivariantly. This allows us to prove, for
instance, that the extended modular automorphism ¢? can be defined canonically for every
cocycle ¢ € Zé(U(G)) and every ¢ € 2y(M), not solely for smooth cocycles or dominant
weights (see Theorem 4.2).

§1. The Bundle Algebra A

We begin by introducing notation. Let M be a von Neumann algebra, and let us denote
by 2o (M) the set of faithful, normal and semi-finite (fns) weights on M. Fix a t € R; for
any © € M and ¢ € 2y(M), we consider the expression (z,¢);.

Let us define

(2, 0)e ~ (y,9)e <= y=2(Dp: D), (1.1)

where, of course, (Dy : Di); means the cocycle derivative. Then (1.1) really does define
an equivalence relation amongst such “symbols”; the transitivity follows from the “chain
rule” for the cocycle derivative. We shall denote a single equivalence class by zp'!, and

the set of all such by M(t).

Propostion 1.1. For each t € R, M(t) is a dual Banach space, when equipped with the
following structure:

(i) ‘ . ‘
.ZL‘QO” _I_ yS«QZt — (.TL‘ _I_ y)'ﬁolt
(1) ‘ ‘
a(z¢") = (az)p"

(iii)

lz™ ]l = 1]l
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Here, x, y are arbitrary elements from M, o € C, and ¢ is any element of LWo(M).
Proof. For each ¢ € 205(M), define ¥, : M x 2Wo(M) — M by

Vo i(z,9) == x(Dy : Do)y

It is clear that W, ¢(a,¢1) = Uy, 4(b,9p2) if and only if (a,v1)¢ ~ (b,)2)¢, le., if and
only if api’ = bpit. Hence, ¥, ; induces a hijection between M(#) and M; we will write
\i/%t: M(t) — M to denote this bijection. In addition, we may use this to “pull back” the
dual Banach space structure of M onto M(t). However, we need to show that this structure

(in particular, the vector space structure) is independent of the choice of .
To see this, we first note that

~

ot (T (20™) + Tou(ye™)) = (x +y)e",

=B

and this agrees with the definition given in the statement of the Proposition. Now, we
must verify that this sum did not, in fact, depend upon the choice of the map ¥, ;. So,
now choose any other ¢ € 20,(M); again we compute

UL (Ty,e(we™) + Wy i(ye™)) = U («(Dp : Dy)i +y(Dy : D))
z;,1t<($+y (D : Dy)y)

((w y)(Dy : D)y )

+y)e".

A

Hence, we see that the induced dual Banach space structure is independent of the choice
of map V¥, 4, and indeed does agree with the structure introduced in the Proposition’s
statement. [

Now, we will consider the interaction of elements from (possibly) different M(¢)’s.
Proposition 1.2.
(i) There exists a C-bilinear map M(s) x M(t) — M(s +t) given by

(2", yp') = 2o f (y) .
(This map can and should be thought of as multiplication.)
(v1) There exists a conjugate-linear map M(t) — M(—t) given by

zp' 0¥ (2)

—1t

(This map can and should be thought of as conjugation — not involution per se,
as it does not map M(t) back into itself.)
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We will indicate the multiplication map by merely juxtaposing elements, while we will
use the standard (-)* to indicate conjugation. Notice that we have stated the preceding in
the form of a Proposition rather than a Definition; indeed, it is (once again) necessary to
check that such operations are well-defined, i.e., independent of the choice of “representa-
tive” of zp''. Most such verifications are done by formulaic manipulation, involving the
interaction of the modular automorphism group and the cocycle derivative. These will, for
the most part, be omitted — yet, when deemed appropriate, a calculation will be made
explicit.

We are now in the position to construct what is sometimes called a Fell’s Bundle, i.e.,

F.=]] M)

teER

we consider

together with the multiplication and conjugation described in the previous Proposition.
Upon fixing any ¢ € 205(M), the map F — R x M given by zp' — (¢,z) is clearly
a bijection. Hence, we may “pull back” any topology we may choose to fix on R x M.
However, we cannot be cavalier about such a choice, lest the topology induced on F depend
on the choice of .

So, we proceed as follows: define

Fri={ep" € F: e <7}, v >0

Then we have F = U,~¢F,. Once again, by fixing a weight ¢, we have a bijection, this
time between F, and R X r8x¢, where Sy 1s the unit ball in M. By considering M with
its o-weak topology, and the corresponding product topology on R x r8y;, we induce a
topology on .. A priori, the topology we have produced on &, appears to depend on our
choice of ¢, but this is in fact not so. More precisely, we have

Proposition 1.3.

(i) Fiz any two fns weights ¢ and ¢ on M. Then there exist bijections p,:F, —
R x 78z and py:Fr — R x 18y given by po(zp') = (t,2), and pyp(yd'™) = (¢,y),
respectively. By considering the product topology on R X rSxyi, when M s given the
o-weak topology, we may use these bijections to induce topologies Tr(p) and T (1)
on Fr. Then, (F,Tr(¢)) and (Fr, T () are in fact identical as topological spaces.
Hence, the topology induced on F, is independent of our choice of weight.

(i) In addition, the map p, opll: MxR — MxR is a homeomorphism when M x R us
given the product topology with M endowed with the Arens-Mackey topology (u.e.,
the (M, My )-topology). Hence, all topologies induced on F by various p,, ¢ €
Wo(M), are equivalent.

Proof. (1) To prove our claim, we show that (¢,,z,) — (¢,z), then (t,,z,us, ) — (¢, zuy),

where we have written v, for (Dy : D). Hence it is sufficient to show (z,u¢, —zus,w) — 0

for any w € M,. In fact, we may assume that w € M, since any element of M, may be
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written as a sum of four such. We calculate
woue, — )| < Ko, — ud) + (@0 — 2us,0)
< w(apal)? (e, —w)*(ue, —un))* + (20 = 2),uw)]
< rflell® w((ur, = we)(ue, = ue)* + (20 = 2), uw)].

Above, we used the fact that ||z, || < r. Now, we know that u;, — u; o-strongly (from the
general theory of the cocycle derivative); hence the first term above goes to 0. The o-weak
convergence of z, — = forces the second term to 0 as well.
(i) Let’s define ® := pryo(p,o0 ,0;1), with pr; the standard projection onto the first factor.
Now, we note that if K is any balanced, convex and o(M,, M)-compact subset of M,, and
I a closed, bounded interval in R, then K' := User (Do : D), K is also a weakly compact
subset of M. This follows from the fact that it is the continuous image of K x I under the
map (w,t) — (Dy : Di)yw. Moreover, the convex closure L := ¢o(K') is again balanced,
convex and weakly compact [DS].

So, assume again that z, — z, this time in the 7(M, M, )-topology, while ¢, — ¢ in R.
Without loss of generality, we may assume that this net is contained in a bounded interval
I. We compute

fggl@(fﬂmtu) = ®(z,1),w)| = sup (zo (D¢ : D)i, — x(De : Di)i,w)|
< sup ({(zy — @), (D¢ : D)t w)| + (2, (Dp : D), — (D : D)) w)|)

< sup ([{(xs — ), (D : DY)e, )| + [((Dg : DY)e, — (Dip : Dip)), wa))

weK
<sup [(wy — 2, p)[+ sup [(De: D), — (Dg: D)), p)l-
nel HEKz

Note that both terms in the last expression tend to 0: the first due to the fact that L, like
K, is also a balanced, convex and weakly compact subset of M,, and the second due to
the fact that the cocycle derivative is a o*-strong-continuous map, and we recall that the
o*-strong- and the Arens-Mackey topologies agree on bounded subsets of M [T1]. O

Similar arguments allow us to conclude that, when we consider, in lieu of the o-weak
topology, the o-strong or o*-strong topology on M, the resulting topologies on F, are also
independent of the choice of weight. We may use these results to topologize all of F in a
weight-independent manner: we define a set U C F to be limit o-weakly open (resp., limit
o-strongly open, limit o*-strong open) if U N F, is open for all r > 0, when F, is given
the approriate topology. These limit topologies on F are also clearly independent of any
choice of weight. We note that the same kind of construction fails if we try to pull back
the product topology on R x r8»; when M is given the norm topology — it is in general
not possible to make the resulting topology independent of the choice of weight.

In addition, we note that the fiber “above” 0, viz., M(0), is isomorphic to M (trivially);
of course, this fiber is the only one which i1s naturally an algebra. Moreover, we remark
that the M-valued inner product is realized as

{zo" | Yo'} = (yo' ) zp™ = o7y 2" = 0% (y*2),
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which agrees with our intuition.
We now consider sections of F, i.e., maps

15

R—-3F , se—a(s)y

We denote such a section by z; hence, z(s) = z(s)p"®. In the event that we want to stress

the dependence on a particular choice of a faithful semi-finite normal weight ¢, we write
z(s) = z,(s)p"*. We now want to consider the Banach space I''(F) of L'-sections of F,

that is, those (measurable) sections satisfying

[lalds = [fate=las = [fao)las < o.

By “measurable” we mean the measurability of the following kind: we say a section x is

measurable if for any finite interval I in R and ¢ > 0 there exists a compact subset K C I
such that |I\K| < ¢ and the map: s € K — z(s) € F is continuous relative to any of the

above topology in F. As the norm: # € M — ||z|| € R4 is lower semi-continuous relative
to the o weak operator topology, the standard arguments show that the measurability of
cross-sections does not depend on the choice of any operator topology in F.

We are now going to turn the space I''(F) of L'-integrable sections into an involutive

Banach algebra A.
Proposition 1.4. When equipped with a multiplication given by

(zy)(t) ¢=/R$(T)y(t—r)dr - /R(%(T)so")(ysa(t—T)wi(t_r))dr

= ([ rolriotatt = rr) .
and an involution defined by
P (1) = (1) = oF(aa(—1)" ",

the space TV (F) of integrable F-sections becomes an involutive Banach algebra, demoted
henceforth by A. (The norm on A has already been indicated, viz., we have seen

llla = [ lletrl ar
R

when f(r) = 2(r)p'".)

The proof is routine, involving multiple applications of Fubini’s theorem; we leave it to
the reader.
We call the involutive Banach algebra A the Bundle Algebra.
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§2. Representation of the Bundle Algebra A

In order to construct the "bundle von Neumann algebra” M out of A, we need to
represent the von Neumann algebra M on a Hilbert space §). So wee begin by fixing the
pair {M, $}, and stress that in this context §) is to be viewed as a left L*-von Neumann
module. Let us, as usual, denote by M’ the commutant of M in L£(£)), and define the von
Neumann algebra N to be the opposite von Neumann algebra, (M')°. That is to say, N and
M’ have the same structure as C-Banach spaces — all that changes is that the multiplication
in N is reversed: if a, b are elements of M', and we denote by a°, b° the corresponding
elements of N, then a®°b° = (ba)°. (Note also that we have (a®)* = (a*)°.) It is clear that
N too is a von Neumann algebra. This allows us to consider §) as an L%-von Neumann
bimodule, specifically an M-N bimodule, where the right action of N on §) is given by

for all £ € 9, a® € N. Notice that since we have N° = M’ | expressions of the form z£a®,
where x € M, etc., are unambiguous.

Because we are now dealing with two different von Neumann algebras, we will use A(M)
and A(N) to refer to their respective bundle algebras, whenever there is any possibility of
confusion. To construct a bundle of Hilbert spaces on which A(M) acts from the left and
A(N) acts from the right, we consider the (cartesian product) X := R x (M) x 9 x
204(N), and a relation ~, on this set, after fixing t € R, viz.,

(r1,01,&1,901) ~¢ (12,902,682, 12), (2.1)

dS«Ql iry B ds@z iTo .
() o= (55) ewapo 22

(Note that here we have (r1, 1, &1,%1), (r2,92,€2,¢2) € X, and g%, etc., represent spatial

whenever

derivatives.)

It is easily verified that the relation ~; is an equivalence relation on the set X. We
denote the quotient set X/ ~; by $(t) and the class [r, ¢, &, ¢] € H(t) of (r,0, &) € X
by @€ ") So in H(t) we have

NE (;j) ', o € Wo(M), v € Wo(N),£ € H,tER (2.3)

or equivalently

itg | —it _ dy N ;
et = (35) ¢ 23)

Observe that the relation ~ is generated by subrelations: goitc,o;“ ~ (Dpy : Doa)i, 01,02 €
Qo (M), ity "t ~ (Dapy @ Dipa)s, by, 109 € Wo(N) and the relation (2.3”).
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Lemma 2.1. In the set $(t),t € R, the linear structure and the inner product defined by:
{ M e =) (@ ) = (N )y
(.Hozrg#)z(t—r) ‘@zrn¢z(t—r)) — (5‘77)
makes $(t) a Hilbert space which does not depend on the choice of o € Wy(M),» € Wo(N)

nor onr € R.

ir it—r ir i(t—r ir i(t—r i i(t—r .
Proof. Suppose ¢i" &1y T = oieu ") and iy = @i nygh T This
means that

. i(ra—71)
{1 = (D% : D‘sﬁ2)—r1 <d¢i> 52(D77/)2 : D¢1)t—r1

ngQ
dip3

i(Tg—Tl)
m = (Der D@z)—m< ) n2(Dtpy : Dy )i, -

Hence we have
dg@z

i(ro—ry)
A1 4 pm = (Do : Do) —r, <d¢o> (Ao + pm2)(Dpg : Dty Ji—ry
2

which shows that the linear operation in $)(¢) is independent of ¢, and r. Also we have
(fl‘m) = (52‘772). Thus the inner product is also independent of the choice of ¢, and
r. O

Observe that for each ¢ € 2y(M) and ¢ € Wy(N) the maps:
Up(t) : € 0"E = Up()E € H(1), € €9
V() :n = ™ = Vy(thy € (1), 0 €9

are both unitaries satisfying

vt = ()

Set
5=]I9®
1R

to obtain a Hilbert space bundle over R which is homeomorphic to the product bundle
$) x R where a homeomorphsim is given by fixing either ¢ € 2o(M) or ¢» € WWy(N) as seen
above. When we need to indicate the dependence of G on the original Hilbert space §) we
write G(£)).

We now define a multiplinear product: (zp'™, "¢, yp't) € M(r) x $H(s) x N(t) —
TP Eytt € H(r + s +t) as follows:

pp PN Lyt = P THIGP (2) eyt
dg@ () t(r+s
“o(q)  Cotaatr
It is again routine to check that the above product does not depend on the choice of

© € Wo(M) and ¢ € Wy(N) and is associative. We omit the detail.
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Lemma 2.2. With r,s,t € R fized, we have the following statements:
1) If a pair (a',b') € L(D(s), H(s+1))xL(H(r+s), D(r+s+t)) satisfies ' (x€) = x(a'§)

for every x € M(r), w.e. if (a,b) makes the following diagram commutative:

Hs) —C (s +1)
H(r+s) b—/> H(r+s+1t)

then there exists y € N(t) such that a'€ = Ly, € € H(s), and b'n =ny, n € H(r+s).
i) If a pair (a,b) € L($ (s), (s+1)) xL(H(r+s),D(r+s+1)) satusfies b(Ey) = (b)y
for every y € N(r), i.e. if (a',b') makes the following diagram commutative:

S

(s) —2— $H(s+1)

E E
H(r+s) ., H(r+s+1t)
then there exists ¥ € M(t) such that a = z&, € € H(s), and by = xn, n € H(r+s).

Proof. We prove only the assertion (i). The other follows by symmetry. Fix a pair (¢,¢) €
200(M) x 2Wy(N). For each £ € § and = € M, we have

@it (b’wir(soiswﬁ))@/ﬂ_” = pirte) <b'(¢i(r+3>x€)>¢‘it
= pilr+s) <b’ N )90"50“6)@/}‘”

SO_Z(T—FS)( ( )50” IHOZS§>¢_it

(:z:gp zsa 5‘9185)#}_”’

V() Us(r + 8) 0 Uy(r + s)x = aVy(t) Uy(s)*ad'Uy(s), z € M.

equivalently

Taking z = 1, we conclue that
Valt Ul + ) DUl +5) = Va(t) Ul V()

is an operator in the commutant M’', which we denote by y° € M'. Namely, there exists
an operator y = y°° € N such that

V() Us(r + )0 Uys(r + )6 = V(1) Uy(s) a'Uys(s)E = &y, £ € 9.



12 TONY FALCONE AND MASAMICHI TAKESAKI

This means: ‘ ‘ ,

a'p"¢ = " Eyy";

bpilrtale = pirtaleypit . ¢ € g,
This completes the proof. [

Let 5 = F2(9) be the Hilbert space of square integrable cross-sections of the bundle G.

We want to let the bundle algera A(M) (res. A(N) act on § from the left (resp. from
the right). Before doing this, we should establish the correspondence between the bundle
algebras A(M') and A(N). We have defined N to be the opposite algebra (M')® of M'.
Let us denote the canonical correspondence between N and M' by y € N « y° € M’ and
h € Wo(N) < ° € Wo(M'), ie. ¥°(y°) = ¥(y),y € N. Furthermore, we write y°° =y
and t°° = 1. Recall that af’(y)o = Jf;(yo),y € N. Therefore the natural extension of
the o—operation from N and M’ to the Fell bundles F(N) and F(M') is then given by:

(y'")” ="y = oV (y*)° T, y €N € Wo(N). (2.4)
Thus the o—operation on A(N) and A(M') is give by:
y°(t) = (y(—1)", y e AN)UAM) (24)

and we get A(N)° = A(M') and A(M')° = A(N).
Define left and right actions of the bundle algebras A(M) and A(N) on $) respectively

s follovs: (2)(t) = [ x(r)E(t - r)dr
{(QQ@)&E@@@SM&
Also A(M') acts on § from the left:
yE=¢y°, ¥ € A,

(2.5)

1.e.

/ Et—s) (2.5°)

:/Rf(t—l—sxg(s)) ds, yeAM).

~

Each © € M(r) and y € N(¢) act on § from the respective side as follows:

(2€)(s) = a&(s —r);
( ) ‘5) = ‘E S _t y7 (2_577)
(°€)(s) = y°b(s +1), E€H
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In particular, M = M(0) and N(0) both act on 9 respectively. Also {¢'' : ¢ € R} and
{1p=" . t € R} are both one parameter unitary groups on §) acting from their respective
sides; these will be denoted by {u,(t)} and {vy(¢)} when we view them as one parameter

unitary groups acting on §) from the left.

Lemma 2.3. i) With ¢ € 200(M) fized, the map U, : T?(G) — &, € L*(R,H) = L2 (R)®9H
defined by:

(Up)(s) = Euls) = ¢ E(s) €9, €€H (2.6)
18 a unitary such that

a) For each x € M,

(Trtize ) (o) = ? ore(o). € € LR,
a’) For each y € N,
(Uwyw:;s) (s) = €(s)y:
b) For each t € R,
Guwﬂﬂ30@>=aw4xseL%&ﬁx

b’) For each t € R,

(vavatrze ) = (22 ets 40,

i) The unitary Uy, with ¢ € Wo(M) fized, carries the von Neumann algebra M gener-
ated by the action of A(M) onto the cross product M xz0 R isomorphically.

i) The von Neumann algebra M' generated by the action of A(M') is the commutant

ofj\v/f and is mapped isomorphically by the unitary U, to the crossed product M' x40 R
with any v € Wo(N) fized.

Proof. i) Let z € M and £ € L*(R, $). Then
(UCPIU:;f)(S) = L,o_iS;E(U;f)(s) = et E(s)
=o?. . (2)(s), seR.

ii) Let us simply compute for ¢ € L%(R, H):

(Upup(t)UZE)(5) = 07" (up(USE)(s) = ™" (UZE) (s — 1)
= go_iscpitgoi(s_t)f(s —t)=¢&(s—1t), s,t € R.
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i) With ¢ € 209(M) fixed, for each = € A(M) we compute:

UaaU2)(s) = ¢ [ a2 =i =7 [ () ets = ryar
@‘iS/R%(T)@"@"(S_”ﬁ(S — r)dr
= /Rafs(xso(r))f(s —r)dr

_ <</R%(r)@(r) @1)dr)§>(s),

where z,(r) = (r)p ™" as seen before and \(-) is the regular representation of R on L?(R).

From these calculations, the assertion follows easily. O
We are now ready summarize our conclusions:

Theorem 2.4. i) The association: {M,f)} — {JVE,%} 18 a functor from the category
SvINA of von Neumann algebras with spatial isomorphsim as morpisms into the category
SFSvNA of semi-finite von Neumann algebras with spatial isomorphisms as morpisms.

i) If we fix ¢ € Wo(M), then the unitary U, defnined by (2.6) gives a natural spatial
wsomorphsim of {JI\V/[,S%} onto {M x,» R, L} R, $)}.

iii) Choosing the canonical Hilbert space L?*(M) attached to every von Neumann algebra
M as a representing Hilbert space § of M, we get a functor M — Jv[fmm the category vINA
of von Neumann algebras with isomorphsims as morphisms into the category SEFvINA of
semi-finite von Neumann algebras with 1somorphsims as morphisms.

Although the proof is by now routine, we are going to give a brief outline in order to
establish some notation.

Proof. 1) Let U be a unitary which implements a spatial isomorphism o = ay of {My, 91}
onto {My, $H2}. For each ¢ € Wy(My), set a(p) = v o a € Wy(My). Clearly, o maps
20(My ) onto Wy(Mz) bijectively. Then the map & defined by:

dep™) = a(z)(al(p)", 29" € F(My),

gives an isomorphism of F; = F(My) onto Fy = F(M3). We also define a map U of the
Hilbert space bunde §; = §(My, $1) onto the other G, = §(Msz, H2) by:

U(e) = (a(p)"UE, ¢i'¢ € Gy,

which can be easily seen to be a bundle isomorphism of F; onto F; and to carry the action
of 1 on §G; onto that of F3 on Gy. Hence it gives rise to a unitary U of the Hilbert
space $1 = ['%(Gy) of L?—cross sections of G; onto the Hilbert space £ = I'*(G2) of
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L?—cross sections of G,, which conjugates the von Neumann algebra {Ml,ﬁl} onto the
other {Mg,f)g} We denote by & the spatial isomorphism of M, onto M implemented
by U which extends the original isomorphsim « of My onto M,. It is now not difficult to
see that if U : 1 — $H2 and V : 3 — $H3 are unitaries implementing respectively spatial
1somorphlsms a=ay: {My, 91} — {Mz, 92} and 5 = ay : {Ms,H2} — {M3, 93} then
VU = VU and /3 o a = Boda. This completes the proof of (1).

The assertions in (ii) and (iii) have already been established. O

Definition 2.5. The von Neumann algebra M is called the core of a von Neumann algebra
M. The isomorphsim & appearing in the proof will be called the canonical extension of the
given 1somorphism .

§3. The Dual Action and The Trace

Recall that the flow of weights of Connes-Takesaki is a mathematical structure coming
from the trivial action of R on weights, O4: ¢ € (M) — e °¢ € W(M). Let us examine
what happens in our context if we consider the same trivial action of R on 20¢(M). First,
we observe that for each t € R

(55799) ~t (y7¢) A (;L', 6_89‘9) ~t (y7 6_8¢)7 (51;799)7 (y,'g/}) € Qﬁ0(3\/[)

Therefore, the corresponding one parameter group of transformations on the Fell’s bundle
F(M) is given by:
et(ms‘ozs) — G_ZStl’ng, .”L’QOZS c M(S)

This is easily seen to be a one parameter automorphism group of F(M).

Lemma 3.1. The one parameter autmorphism group {6; : t € R} of the Fell’s bundle
F(M) can be extended to the von Neumann algebra M, which will be denoted by {6, : t € R}

again. Furthermore, the one parameter automorphism group {6; : t € R} is conjugate to

the dual action {of 1t € R} on M xse R under the spatial isomorphism given by the
unitary Uy, of Theorem 2.11.

Proof. Define a one parameter unitary group {V(t):¢t € R} on 9 by
(V()E)(s) = eT"¢(s), s€R, £€ 8. (3.1°)

It then follows easily that V(¢)zV(t)* = 0¢(z), 2 € A(M) and V(t)JV[V(t)* = M. We leave
the details to the reader. 0O

As a consequence, the action 6 of R on M is integrable. Hence the integral

Iy(z) = /RGS(;Z:)ds, re M, (3.2)
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is an operator valued weight from M to M? which is canonically identified with the original

von Neumann algebra M. Thus, we get a semi-finite normal weight ¢ on M, to be called
the dual semi-finite normal weight, by the formula:

olx)=polp(x)= 50(/ 93($)ds>, T € j\7[_|_. (3.3)
R
The dual semi-finite normal weight ¢ is faithful if the original semi-finite normal weight ¢
is.
Lemma 3.2. i) The modular automorphism group of ¢ is given by:
of = Ad(e™),t € R.
ii) The weight T, on M defined by:

)=

o) =l p (e H0 e R s ) o e0y (B4

18 a faithful semi-finite normal trace such that
To,00, =€ °1,, s€ER. (3.5)
i) The trace 7, does not depend on ¢, i.e.
T =Ty, @, ¢ € Wo(M).
We will denote this common trace by .

Proof. i) The one parameter automorphism group {Ad('")} and {6, } commute as 6,(p'") =
e~'s1p' Hence we have IgoAd(p') = Ad(¢!")oly, which meas that poAd(p') = 5, € R.
Thus we have ¢!t € J’\V/[@, le. af(apis) = ", 5.t € R. From the general theory of operator
valued weights, it follows that o¥°* (z) = o7 (z) for every = € M. Hence Ad(¢') and o7

agree on M and {p" }which together generate M. Hence, (i) follows.
ii) The general theory of weights of Pedersen—Takesaki [PT] yields that the weight 7,

is a faithful semi-finite normal trace on M. For the trace scaling property (3.6), we simply

compute informally for s € R and = € M (using a computation which can easily be made
rigorous)

rl0.2) = ¢(760,0)) = 50,0007 e) )

= ‘35(6_899_1.1) =e *1,(z).
iii) Take ¢, € Wy(M) and compute the Connes cocycle derivative:
(D7y : D1y )¢ = (D1 : D@)e(D Dz/;)t(D;/; : D1y)4
= "(D(p o Iy) : D(y o I))ip"
— @_Zt(DQO . D¢)t¢lt — ¢_lt<¢lt¢_lt)¢lt
=1.
This completes the proof. [

We can therefore conclude the following:
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Theorem 3.3. To every von Neumann algebra M there corresponds canonically a covari-

ant system {M R.,8,7} of a semi-finite von Neumann algebra M equipped with a fasthful
semi-finite normal trace T scaling one parameter automorphism group in such a way that

the original von Neumann algebra M naturally identified with the fized point algebra M.

The covariant system {Cx;, R, 8} obtained by restricting 6 to the center C5; of M is precisely
the flow of weights on M of Connes-Takesaks.

Definition 3.4. We call the covariant system {J’\V/[,R,H,T} the quantum flow of weights
on M.

Theorem 3.5. The quantum flow of weights {JI\V/E,R,G,T} on a von Neumann algebra M
18 @ functor from the category VINA of von Neumann algebras M with ismorphims as

morphisms onto the category SFVvINA of semi-finite von Neumann algebras {ﬁ,R,G,T}
equipped with a one parameter automorphism group € which scales a faithful semi-finite

normal trace T in such a way that o8, = e °1, s € R, where morphisms of SEVNA are
those 1somorphisms which conjugate the one parameter automorphisms and the traces.

Proof. This theorem is merely an extension of Theorem 2.4iii; all that needs to be verified
is the naturality of the conjugation. N N

Let a: My — M3 be an isomorphism of von Neumann algebras, and a: M; — M, be
the corresponding isomorphism of their (respective) cores. We need to verify that

(Gofs0a™t)(a(t)e') = Os(x(t)p™),

for all s, ¢t in R. But straightforward calculation yields

(606, 06" a(t)p™) = (a0 6,)(a™ (a(1))(p o a1
= (a2t —s))(poa)’)
= 2(t = s)p" = O, (x(t)p™).
Hence, we are done. 0O

In order to continue our study of the quantum flow of weights on M, we introduce some
notation. We set {A,R, p} to be the covariant system {L*°(R), Translation}, i.e.

(pe(F))(s) = f(s +1), fEA, steR. (3.6)

In {A,R,p}, we fix the following one parameter unitary group {V(¢) : ¢ € R} which
generates A as a von Neumann algebra, and its analytic generator H, which is affiliated

with A:

{ (V(t))(s) —e %t 5.t ER;
H(t)=e¢".
It then follows that: ‘
pt(V(s)) = e "'V(t), s,tER. (3.8)
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Theorem 3.6. i) Each ¢ € (M) gives rise uniquely to an equivariant isomorphsim %

from {A,R, p} into {j\v/[ R, 6}, where s(¢) us the support projection of ¢, such that
™ (V(t)) = 0, teR.

i) If m 1s an equivariant wsomorphism of {A,R, 8} into {J\N/EG,R,H} with e € Proj(M),
then there exists ¢ = @r € W(M) such that 7 = 7%,

s(p)>

Proof. The assertion (i) for faithful semi-finite normal weights has been proven already
in the process of constructing M. For a non-faithful © € 2W(M), what one needs do is
simply consider the reduced algebra My, of M by the support s(y) of ¢ and to apply
the assertion for faithful ones.

i) Acoording to the considerations in the case (i), we may and do assume e = 1. Set
v(t) = W(V(t)),t € R,. Then we have 6, (v(t)) = e "y(t),s,t € R. Choose ¥ € WWy(M)
and put u; = v(t)y . Then it follows that {u;} is a oc¥-cocycle, so that there exists
a ¢ € Wy(M) by the converse of the Connes cocycle derivative theorem such that u; =
(Dyp : D)y, ie. uy = p'p~'". This means that v(t) = ¢'',¢# € R. The isomorphism 7 is
determined by the image {v(t) : t € R} of the one parameter unitary group {V(¢)}. O

Because of this result, a natural question is how to compute ¢, from the embedding =
of {A,R, p}, or from {v(t)} = {m(V(t))}. The following proposition answers this question:
Proposition 3.7. Suppose 7 = 7% for a fized o € JW(M). Let h = w(H) be the analytic

generator of the one parameter unitary group {v(t)} = {W(V(t))} mn j\v/[8(¢). For any
f e L>®R)y with [, f(t)dt =1 we have

o(z) = 1i{r(1)7'<h%(1—|—£h%)_%x%7r(f)$15h%(1 +€h%)_%>, ;UEJI\V/E_F. (3.9)
Symbolically, we can write:
@($)2T<h%$%ﬂ'(f)l’l§h%), J:Ej\v/[_|_. (3.9

Proof. First, for any positive self adjoint operator K affiliated with j\v/[, we will write Tx
for the semi-finite normal weight on M given by

Tr(2) = ii{r{l)r(]&’%(l + €I{%)_%J}IX’%(1 + 61{%)_%), r € J\N/[+.

From Lemma 3.2, it follows that ¢ = 7. Now, we compute for z € My

rr(ein(fle?) = g(a2n(fla?) = p(Lo(a7n(f)a 7))

as
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Lemma 3.8. If p is a normal weight on A such that pops =e *p and 0 < p(fo) < oo
for some fo € A4, then the weight p 1s of the following form with some constant C' > 0

p(f) = C/ e’ f(s)ds, feA=L*R), (3.10)
R
and 1t 18 therefore faithful and sema-finite.

Proof. Let m, be the definition ideal of the weight p. Then f; € m,, so that m, # {0}. By
the relative invariance of 1 under the action p, the ideal m, is also invariant. Therefore,
m, is o-weakly dense in A. Similarly, the left kernel N, = {x € A : p(2*z) = 0} of p is
p-invariant and N, # A as fo ¢ N,. Thus N, = {0}. This means that the weight p is
semi-finite and faithful. Consider the function H defined by (3.7) and observe that ps(H) =
e *H,s € R. Thus the new normal weight weight u' given by p'(f) = u(Hf), f € Ax,
is invariant under the action p and semi-finite and faithful. The uniqueness of translation
invariant regular Borel measure on R implies the existence of a constant C' > 0 such that

p'(f)=C [ f(s)ds, f € Ay. Thus our assertion follows. [
The following is a counterpart of a result of U. Haagerup, [H: Theorem X], recast in the

context of quantum flow of weights.
Theorem 3.9. The following statements for ¢ € WW(M) are equivalent:
1) The weight @ s finite, i.e. p(1) < oo,
) 7o(A) 1 m, £ {0}
iii) The operator ¢ in M is T-measurable in the sense of I. E. Segal, [Seg].

Proof. i) = ii): Suppose ¢ is finite. Let p = x[91] € A4, the characteristic function of the
unit interval. We have Iy(p) = 1, ||[HT'p|| = e*' < o0 and

T(7%(p)) = (e 7' p) = e(Ls(¢™'p)) < ep(lo(p)) = el < 0.
Hence 7n¥(A) Nm, # {0}.
ii) = iii): The assertion (ii) implies the existence of a function fy € A4 with 0 <
7(7#(fy) < co. By Lemma 3.8 the weight 7 on n%(A) is semi-finite and given by (3.10).
Since X[x 4+00)(H) = X(—o00,~log a] for any A > 0, we have

—log A C
T(X[A,+oo)(g0)) - C/ esds = X < 00.

—
iii) = ii): This implication is an immediate consequence of the definition of 7-measurability.
ii) = i): The #-invariance of m,; N 7%(A) implies the o-weak density of the ideal m, N
7?(A) in 7¥?(A). This means that 7 is semi-finite on 7¥(A), so that Lemma 3.16 applies
to p =71 o7w¥. With p as above, we have

p(1) = o(Lp(m¥(p))) = &(77(p)) = T(w7¥(p))

1
:,LL(Hp):C'/ ds=C<oo. 0O
0

Motivated by the term ”density” in [C9], we introduce
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Definition 3.10. For ecach o € C, a closed, densely-defined operator T affiliated with M
18 said to be of grade « if

0s(T) =e T, s € R; (3.11)
we will use the notation grad(T) to refer to a.

Propgsition 3.11. Suppose that S and T are closed, densely-defined operators affiliated
with M. Then,
1) grad(S*) = grad(S).
ii) If the product ST is densely defined and preclosed, then grad(ST) = grad(S) +
grad(T) where ST is the closure of ST.
iii) grad(|T|) = R(grad(T)) = 82 tarad(®),
iv) For T # 0, of grad(T) is not pure imaginary, then T must be unbounded and the

spectrum of |T| is absolutely continuous relative to the Lebesque measure.

v) If T > 0 and p = grad(T) # 0, then there exists uniquely ¢ € WW(M) such that
T = hy where h, is the operator of Proposition 3.8 corresponding to w. In other
words, after identifying ¢ with h,, we have Tv € 20(M).

Proof. The claims (i), (ii) and (iii) are trivial, so we omit their proofs. We will prove (iv)

and (v) together. The unboundedness of T is obvious because 6, is an isometry of M
so that ||T|| cannot be finite. Let e be the support projection of T' > 0, i.e. the range

projection of T. Consider the one parameter unitary group {U(¢) : ¢ € R} in JI\V/Ee given
by U(t) = T%. Then we have 0,(U(t)) = e '*'U(t),s,t € R. Therefore there exists a
equivariant isomorphism 7 from {A,R, p} into M, such that m(V(t)) =U(t),t € R. Thus
by Theorem 3.6.ii, there exists p € 20(M) such that U(t) = ¢'',t ¢ R. O

Hence, the set 20(M) of semi-finite normal weights on M is identified with the set of
all densely defined positive self-adjoint operator of grade 1 affiliated with M. Naturally,
we want next to identify the predual M, as a subset of the set of operators with grade
one. Recall the polar decomposition w = u|w| for w € M, in the predual M,. Theorem
3.9 gives the criteria for |w| to be finite. Thus, we have the following characterization of
operators corresponding to elements in the predual:

Theorem 3.12. Let M be the set of all T-measurable operators affiliated with M of grade
one. Then there exists a natural byjection:

w €M, & T(w) e M

such that
1) T(w) >0 w >0;
i) T(p) =g if o € MT,

i) T(awb) = aT(w)b, a,b € M,w € M,;
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iv) ifa € m}: has Iy(a) =1, then a%xT(w)alf € Ll(j\v/[,r),x eM, and

[N

w(z) = r(a?zT(w)a?), = € M. (3.12)
Consequently, the value of the right hand side does not depend on the choice of a.
Namely, the notation

/T = T(G%TCL%), T e M, (3.127)

18 Justified, and the bilinear form:

(x,T) = /;L'T, (3.127)

gives the pairing between M and MY which identifes ML with M,.

Proof. 1) To avoid possible confusion, let us write T(¢) for ¢ € 20(M) when we consider
it as an operator affiliated with M. Theorem 3.9 asserts that T(p) € IMM' if and only if
w € M. For a general w € M, set

T(w) =uT(jw|) (3.13)

with w = u|w| the polar decomposition of w. Observe that if w € M}, then the support
projection s(T(w)) of T(w), the range projection, is precisely s(w) the support of w. This
means that the decomposition of T(w) for a general w € M, of (3.13) is precisely the polar
decomposition. Thus (i) follows.

i) Trivial.

i) If w = ujw| is the polar decomposition of w € M,, then for all unitaries a,b € U(M)
we have the polar decomposition:

awb® = (aub™)b|w|b*
of awb*. Thus,
T(awb™) = (aub*)T(blw|b*) = auT(Jw|)b* = aT(w)b".

The assertion follows by linearity.

iv) Suppose T = T(w),w € M. Let T = UK be the polar decomposition. By Theorem
3.18, K = T(|w]) is 7-measurable. Hence T' is 7-measurable.

Conversely, suppose that T' is T-measurable. Let T'= UK be the polar decomposition.
Then U is fixed under 6, so that U € M. Since K is 7-measurable and of grade one, there
exists € M such that K = T(¢). Now we have T = T(w) with w = Uy € M.
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Now we fix a € m4 with Iy(a) = 1 and w € M,. Let w = ugp be the polar decompostion.
Set T'=T(w) and K = T(y). Then K = |T| and 7 is semi-finite on 7¥(A). Therefore, there
exists a conditional expectation € from M onto n?(A) such that 7(exe) = 70&(x),x € j\v/[,
with e = s(¢). We claim £06s = 650&,s € R. In fact, for any f € A and z € JT/[, we have

T(E(0s(2))m?(f)) = 7(8s(x)7*(f)) = 7(6; (1"9 s(77(f)))
= e r(am?(p-s(f))) = e r(&(2)m” (p-5(1)))

)
)-

™
N
=
N
N—
3
R
N
~n

Therefore, we have &(my, ) = 7¢(L>°(R)N L'(R)
Indeed,

We next claim that K3a? € LZ(M 7).

r(K7a?)*(K%a?)) = 1(a*Ka?) = 7(K7aK?)
= @(a) = p(Ip(a)) = ¢(1) = [le|| = [lw]|| < oc.

T ((a%qu%)*(a%qu%)) = (I’% .TL‘*G:EUI(%) = @(u % azu)
= p(lg(u*z"azu)) = p(u*z*zu) < 0.
Thus we get azzT(w)a? = (a2zuk?)(K2a?) € Ll(J\/[ 7) and (3.12) follows. O
The proof of the above theorem immediately yields the following;:
Corollary 3.13. If 9M? be the set of all T-measurable operators affiliated to M of grade
%, then the inner product:

(S|IT) = /T*S, S, T € M?, (3.14)

makes M? a Hilbert space which can be identified with the standard form L*(M) of M.

It is now possible to unify the theory of non-commutative LP-spaces. For a fixed 1 <

p < oo, the space LP(M) is obtained as the completion of the set Mu)% w E M. This is
however identified with 97, the set of all 7-measurable operators of glade = affiliated to

M, which i1s a Banach space with the norm:
irl - (firr) Tem (5.15)
and the pairing of IMP x M7 with % + % =1 is given by:
(5,T) = /ST, Seamr, Teoms (3.16)

We leave the details to the interested reader; see also [H2, Iz, Ks|.
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Remark 3.14. i) If we denote the set of all T-measurable operators of degree o for a € C
by M= (a natural extension of the above notation), then we have Mes = M(s) for s € R.
i) If R(a) <0, then M= = {0}.

The remark (i) follows from the fact that if 7 € 9 and 6,(T) = T,t € R, then T is
bounded and therefore T' € M because 7(p) = +oo for every non-zero p € Proj(M). The
remark (ii) follows from the fact that if T' is a positive self-adjoint operator of degree p < 0,
then we have 7(x[x,00)(T')) = oo for every A € R. So if T is 7-measurable, then T' must be
bounded. But the grade condition on 7' makes boundedness impossible except for any T

other than 7' = 0.

Corollary 3.15. Let I be the x-algebra of all T-measurable operators affiliated to M. Let
H be the right half plane in C. Then for every o, 3 € H and ¢,v» € MT we can add and
multiply freely elements of M and »PM inside the *-algebra IN.

§4. The Local Characteristic Square — Extended
Unitary Group and Modular Automorphism Group

We begin by first citing an important result concerning the structure of the quantum
flow of weights from the work of Katayama, Sutherland and Takesaki, [KtST].

Theorem 4.1. The relative commutant M' N M of the original von Neumann algebra M
in the core M is the center C5p of M.

Now, let’s fix a ¢ € (M), and set A? = 7¥9(A) and D¥ =CV A¥Y = CV n¥ (LOO(R)).

Observe the following easy but important facts:

{ (A#) N M =M

(4.1)
D AM C C,,

where M, is the centerlizer of ¢ in M and €, is the center of M.

To avoid unnecessary complication, let us assume that our von Neumann algebra M is
a factor.

Recall the characteristic square for a factor M cited in the introduction, in particular
the middle row for the extended unitary group ﬂ(M)

1 — UM) — UM)-SZUue) — 1, (4.2)

where (0b); = b6,(b*), t € R,b € ﬂ(M) In [CT], it was shown that each dominant
© € Wo(M) gives rise to a continuous injective homomorphsim o¥ : ¢ € Z;(U(C)) —
of € Aut(M), called an extended modular automorphsim. It was further shown that if
c € Z3(U(€)) is twice differentiable, then the extended modular automorphism o¥ makes
sense for arbitrary ¢ € 2o(M). A natrual question left in [CT] unanwered so far is
whether this extended modular automorphism of makes sense for general ¢ € 20,(M)

and ¢ € Z,(U(€)). In a joint work of Sutherland and Takesaki [ST], they proved that
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every element ¢ € Z;(U(C)) is cohomologous to an infinitely differentiable one. We want
to explore this question in the context of quantum flow of weights.
First, we state

Theorem 4.2. To each ¢ € Wy(M) there corresponds a right inverse by, : ¢ € Z})(U(e)) —
by(c) € ﬂ(M) N D? of the coboundary map O such that

i)
dbolc)) =, ¢ Zy(U(O)); (4.3)

ii) by, 18 a continuous hommorphism of Zj, (U(G)) into ﬁ(M) N D?;
iii) For every a € Aut(M) we have:

b

poa—1 = @ 0by0a (4.4)
iv) If ¢ € Wo(M) is dominant, then

Ad(by(c") = 0f, ceZy(W(E)); (4.5)

C

v) For every pair ¢, € Wo(M) of dominant weights, we have
bo(c o) = (Dg - DY), € THU(E)). (46)

vi) For each c',c* € Zj (U(G)), we have:

(D¢ : Dip)or 2 = (D - D)ooy (D : Dip),a). (4.7)

vii) Relative to the strong resolvent convergence topology on the space 2Wo(M) of faithful
sema-finite normal weights and the o*-strong topology in ﬂ(?\/[) the correspondence
b:p € Wy(M) — by(c) € ﬂ(ﬂ\/[) is continuous for each ¢ € Zy(R,U(C)).

viil) In the case M is o-finite, the map: ¢ € Wo(M)NM, — by,(c) € ﬁ(ﬂ\/[) 18 continuous
relative to the morm topology in the first space and the o*-strong topology on the
second space for each fized ¢ € Z})(U(e)).

Before proceeding with the proof, we establish notation and a suitable realization of
the quantum flow {M,R,60,7}. With {M,$H} a fixed representation, we define a map
W, : L*(R)® $ — L*(9($)) for each ¢ € WW(M) as follows:

(Web)(s) = ¢"E(s) € s(@)(t), €€ L*(R,H),» € W(M) (4.8)
which is a partial isometry from L?(R, $) into L?*(G($))) such that

We(s(p) @ X)W =", teR,p € W(M);
WoW, =s(p)g @1 and  W,WZ =s(0)r2(g(s))
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where the indices $ and L*(G($)))) indicate the representation spaces of the projection
s(¢p) respectively.

With ¢ € 20¢(M) fixed , we know that M is naturally identified under the unitary
W, : L*(R,9) — L*(§(9)) with the crossed product M x,» R = W;j\v/[W@. We want
to choose the diagonalization of {"} rather than the dual action {6;}. So let F be the

Fourier transform and the Fourier inverse transform on § = L*(R, $) given by

E)(0) = /25 Ju e PE(s)ds
s) = \/;IR e"*PE(p)dp.

where the above integral should be undertood as the improper integral:

¢ € L*(R, 9H), (4.10)

n—00
—n

/ Fdt = tim [ (4.11)

for those functions f such that the above limit exists. We then work with the von Neumann
algebra F(M X g R)F* instead of the original crossed product. We have then:

[ (B = g = (100 (012)

(Fu(p)F*€)(s) = &(s — 1) = (A()E) (s).

The von Neumann algebra F(J\/[ X g R)F* = F(M@L(LZ(R)))(H@MF* 1s then identi-
fied with the fixed point algebra (M@L (LQ(R)')CM @Ad(p)
identification, let us denote by 7% the isomorphism of M onto F(M Mg R)F*, le

. In order to keep track of the

7P(x) = FWSaW,F*, M. (4.13)

Proof of Theorem 4.2. As mentioned above, we identify M with F(M X g R)F* and o'
with V(¢). The quantum flow {6;} is then given by the one parameter unitary group
{p(s):s eR}={1®p(s):s€R}. We set:

(b)) (s) = (7¥(c—s)€)(5), ¢ € Zy(U(@)),E € $,5 € R. (4.14)

We then put b,(c)
Db

T ( (). Tt is easily seen that b,(c) € D¥ = CV A¥ and that
bo(cte?) = by(c)by(c?) f

(c?) for every ¢!, c? € Z} (U(G)) Also the map b, : ¢ € Z}g(U(G)) —
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by(c) € D¥ is continuous. Now with b = b, (¢) for short, we compute:

Hence we get ¢; = b0,(b*) = 0(b)¢,t € R.

We are now going to prove the equivariance of b,. As

Jfoa_l —aoofoa ' teR, o€ Aut(M),
we have
#7007 (@) = D)F* (@)U )", o €7
= ('), (4.15)

where (j(a) =U(a)®1 on 5 = L*(R,9) = H @ L*(R) with the standard Hilbert space £
and U(«) the unitary such that

{ U(a)$H4 = H4;
Ula)zU(a)* = a(x), =M.

The extended automorphism & € Aut(j\v/f) is then implemented by the unitary U(a) =
Ula)@lonH=H® LZ(R). Now we compute for ¢ € Zé(U(G)):

(# (@b (@ ())E) (s) = (T(@)7* (by(a™" ()T (@)"€)(s)
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Thus the equivariance of the maps by, ¢ € 205(M), follows.
Before continuing with the proofs of statements (iv) and (v), we need to lay some
groundwork. We fix a dominant ¢ € 205(M) and set

My(t) ={z e M:0f(z)=e""z, sc R}, tER.

Lemma 4.3. If ¢ € WWo(M) is dominant, then the center C, of the centeralizer My, of ¢
carries a one parameter automorphism group {67 :t € R} such that
1) za =07 (a)r, x € My(t), a € Cy;
ii) There exists canonically an isomorphism 7% from C onto C, which conjugate two
one parameter automorphism groups 6 and 6%;
i) The actions of C and C, on 9 are related in the following way:

(7#(@)€)(s) = (F#(I_u(@)E)(s), a€CsER.

Proof. This is an immediate consequence of the definition of a dominant weight; see [CT].
We leave the proof to the reader.

End of the Proof of Theorem 4.2. iv) Now we assume that ¢ € 20o(M) is dominant. For
each © € My (t), we have

(7%(2)€)(s) = 2€(s —1),€ € 9, 5,1 € R.

c €7 (U(G)), We write b = b,(c), ¢ € Z}Q(U(e)), for short. We now compute for each
€ My(t)

(72 (bad" ) (s) = (7%(c=s)T(2b")E) (s) = (7¥(ad"c—s)€) (s)
= :1:( (b*c_ )f) (s —1) (ﬂ“o(c;‘_sc_s)f)(s —t)
= 2 (72(0-s(c})E) (s — t) = (7P(b-s(c}))E) (s)
= (T9(0-s(cy)z)€) (s) = (T2(c))T?(2)€)(s)

Therefore, we see Ad(bdc))(x) = cjz, v € My(t). This means precisely that of =
J/XH(Z)@(C*)). This completes the proof of claim (iv).

v) and vi) To discuss the comparison of weights, we need to investigate the 2 x 2
matrix algebra My = M2(C) @ M. The quantum flow of weights for My is given by

{j\/VEQ = M,(C) ® JI\V/[,R,idQQ 6, Tr ® 7}. For any pair ¢, € 2y(M), we get the balanced
weight ¢ @ 1 € 2Wo(Mz) whose "it”-power (¢ & 1)" is given by:

)
)(s

(¢@¢)it:|:¢()l Lboit:|7 t eR,
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and therefore

ﬂ'@@d’(f) _ |:7T'L‘D(§f) ﬂ-d’(éf)] , [ €L™R).
This means then:
o) = | "7 0| cezue), (4.16)

and we get:

adeo v [y o]) =10 PP rer

st ([0 0]) =0 P72 ] cemmee.

This together with (4.16) yields (v) and (vi).

(vii) and (viii): As the norm convergence of a sequence {¢,} of faithful normal positive
linear functionals to a faithful ¢ € M implies the strong resolvent convergence of {¢,}
to i as the sequence of self-adjoint closed operators affiliated to j\v/[, the claim (viii) follows
immediately from (vii). The strong resolvent resolvent convergence of {¢,} implies the o*-
strong convergence fo the sequence {¢*} of one parameter unitary groups to ' uniformly
in ¢t of any bounded interval. Thus the sequence {7¥"} of equivariant embeddings of
{A,R, p} to M converges to ¥ o*-strongly pointwise. Thus in the definition of Z@ of
(4.15), {7%"(c_s)} converges o*-strongly. The Lebesgue dominated convergence theorem
takes care of the desired covergence of {b,, (c)} to b,(c). O

The next result justifes the notation Cnt,(M).

Corollary 4.4. If M is a separable factor, then elements of Cnt,.(M) acts trivially on
strongly central sequences, i.e. if {x,} is a sequence such that lim, .o ||[zpw — wz,| =0
for every w € M, then {a(z,) — x,} converges to 0 o*-strongly.

Proof. Tt suffices to prove that the claim is true for every strongly central sequence {u,} of
unitaries in M. The strong centrality of {u, } is equivalent to the convergence: lim,, . ||wo
Ad(up) —w| = 0,w € M,. If @ € Cnt,(M), then by definition there exists ¢ € Zj(R,U(C))
such that @ = Ad(u) o of for any fixed faithful ¢ € M} and some v € U(M). As Ad(u)
acts trivially on every strongly central sequences, we need to prove that {o2°(u,) — un}
converges to zero or equivalently {u}o?(u,) — 1} converges to zero. But observe that

u,ao

10%(un) = (D o Ad(us) : D) = bpona(un) (€ )bo(c")".

By Theorem 4.2.viii, if ¢ is a faithful normal state on M, then {b oad(u,)(c)} converges to
by(c) o*-strongly. Thus, {u}o?(uy,)} converges to 1. O
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Corollary 4.5. FEach ¢ € 20o(M) gives rise to an equivariant splitting of the short ezact
sequence (4.2) gwen by the homomorphism by, : ¢ € Zé(U(G)) — by(c) € UM) N D¥.
Therefore, the extended unitary group ﬂ(ﬂ\/[) 18 a sema-direct product:

U(M) = UM) Zh(u(e)). (4.17)

Ad(by ()

Lemma 4.6. The covariant system {D? R, 0} for every ¢ € Wo(M) splits canonically:

(D?.R, 0} = {(MND?)TA®,R,id @ ). (4.18)

Proof. Since 0,(p') = e7'5p' st € R, the characterization of a dual covariant system
due to M. Landstad [Land], yields that the covariant system {D?¥ R,8} is dual to the

system {(‘D@)e,{Ad(@”) it € R}} As D¥ is abelian, Ad(p'"),t € R, acts trivially on
(D?)¥ = M N D?, so that our assertion follows. [

Definition 4.7. i) We call Mod¥* (M) = {Xa(u) tu € DY N ﬁ(ﬂ\/[)} the modular group of
2 € Qﬁo(j\/[)

i) We set D, = D? N M and call it the strong center of the centralizer My of ¢ €
o(M).

i) We set Mod? (M) = {Ad(u) : v € W(Dy,)}.

Summarizing the above results, we obtain:

Theorem 4.8. The above groups form the following commutative Aut,(M)xR equivariant
exact square:

l — WD,) —— UM)ND¥ —— Zé(U(G)) — 1

Ad Ad

1 1 1

with U(M) N D? = U(D?) x Z§(U(©)).
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Definition 4.9. We call the above exact square the local characteristic square of ¢ €
200(M). For a non faithful ¢ € Wo(M), the local characteristic square can be also defined

considering the resuced algebra My(,).
We have now the following easy but important consequence:

Theorem 4.10 (Functoriality). The association of the local characteristic square to
each o € Wo(M)) s a functor in the sense that if a is an isomorphism: M — N then the

canonical extention o, which maps the quantum flow {JI\V/E,R,GM,TM} of M onto the other

{ﬂ,R,GN,TN}, maps the local characteristic square LC'Sq, of ¢ € Wo(M)) onto the local
characteristicsquare LCSquoq-1 of o 0 a™! € Wo(N) isomorphically.

We leave the proof to the reader.

Collorary 4.11. The automorphism group Aut(M) acts on the field {LC’Sqw D p €
Qﬁo(M)} of local characteristic squares in the obvious way.

§5. Conclusions

It should now be apparent that the quantum flow of weights is given by the same types
of ideas which produced the flow of weights of Connes-Takesaki, viz., while the original
flow of weights is constructed by identifying two semi-finite normal weights when they are
equivalent under the Murray-von Neumann equivalence, the quantum flow of weights is
given by relating two weights by the Connes cocycle derivative. In each case, the flow is
given simply by multiplication of each semi-finite normal weight by the scalars e™*.

As was noted in the introduction, we can relate this construction of the quantum flow
of weights to the theory of LP-spaces. Each space M(t) is given by considering the purely
imaginary power @'’ of ¢ € 2Wo(M). (The canonical LP-space LP(M) due to Kosaki is
constructed by considering positive powers g‘o%, 1 < p < oo, of the weight ¢ € 20o(M).)
As in the case of the Fell bundle {M(#)}, two different LP(M) and LI(M), p # ¢, do not
intersect. But as soon as one fixes a ¢ € 2Wy(M), one can have :cgo_% = yg.o_% for some
pair x € LP(M) and y € LY(M), or equivalently x = aLp% € LP(M) and y = at,o% € LY(M);
one then can view these two elements in different spaces as the same elements. The
same phenomenon occurs if one identifies ap'® € M(t) and ap®® € M(s). However this
identification simply brings about confusion. Conversely, to view each M(¢) as an individual
Banach space will also fail to yield the complete picture. Our emphasis throughout has
been to view LP-theory as a mutiplicative theory, and consider these all at once — not as
the theory of a singel isolated Banach space. This point of view allows us to observe that

the analytic continuation of M7 gives precisely {M(t) : t € R} = {9+ : t € R}.
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