SOLUTION SET FOR THE HOMEWORK PROBLEMS

Page 5. Problem 8. Prove that if x and y are real numbers, then

2zy < z? + y2.

Proof. First we prove that if x is a real number, then 22 > 0. The product
of two positive numbers is always positive, i.e., if z > 0 and y > 0, then
zy > 0. In particular if z > 0 then 22 = - = > 0. If = is negative, then —x
is positive, hence (—x)? > 0. But we can conduct the following computation
by the associativity and the commutativity of the product of real numbers:

0> (—2)* = (—2)(=z) = (-D2)((-1)2) = (-1)z))(-1))=
= (=D(@(-1)))z = ((-D(=1)z)z = (1lr)z = ?

rr =1x°.
The above change in bracketting can be done in many ways. At any rate,
this shows that the square of any real number is non-negaitive. Now if x and
y are real numbers, then so is the difference, x — y which is defined to be
7 + (—y). Therefore we conclude that 0 < (z + (—¥))? and compute:

~—

0< (z+ (—y)° = (z+ (-y)(x+ (-y) = z(z + (—y)) + (=) (z + (=y))
=2+ z(—y) + (—y)z + (—y)* = 2° + y* + (—2y) + (—zy)
=2 +y” +2(-ay);

adding 2zy to the both sides,

2y = 0+ 22y < (2% + y* + 2(—ay)) + 22y = (2% +y?) + (2(—xy) + 2zy)
= (@® +y°) +0=2?+ >

Therefore, we conclude the inequality:
2zy < 22 + 92

for every pair of real numbers x and y. @

1
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Page 5. Problem 11. If a and b are real numbers with a < b, then there
exists a pair of integers m and n such that

a<@<b, n # 0.
n

Proof. The assumption a < b is equivalent to the inequality 0 < b — a. By
the Archimedian property of the real number field, R, there exists a positive

integer n such that
n(b—a) > 1.

Of course, n # 0. Observe that this n can be 1 if b — a happen to be large
enough, i.e., if b—a > 1. The inequality n(b—a) > 1 means that nb—na > 1,
i.e., we can conclude that

na + 1 < nb.

Let m be the smallest integer such that na < m. Does there exists such an
integer? To answer to the question, we consider the set A ={k € Z : k > na}
of integers. First A # (). Because if na > 0 then 1 € A and if na > 0 then by
the Archimedian property of R, there exists k € Z such that k =k -1 > na.
Hence A # (). Choose ¢ € A and consider the following chain:

b>0—-1>0—-2>--->0—k, kel

This sequence eventually goes down beyond na. So let k be the first natural
number such that ¢ — k < na, i.e., the natural number k£ such that £ — k <
na<{—k-+1. Set m=¥¢—k-+ 1 and observe that

na<m=4~¢—k<+1<na+1<nb.

Therefore, we come to the inequality na < m < nb. Since n is a positive
integer, we devide the inequlity by n withoug changing the direction of the
inequality:

Q©

Page 14, Problem 6. Generate the graph of the following functions on R
and use it to determine the range of the function and whether it is onto and
one-to-one:

a) f(x)=a3.
b) f(x) =sinx
c) f(z)=¢€".
d) f(z) = 15
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Solution. a) The function f is bi- |
jection since f(z) < f(y) for any
pair z,y € R with the relation
x < y and for every real number
y € R there exists a real numbe
x € R such that y = f(x).

05

-05

b) The function f is neither in-
jective nor surjective since

[z +2) = f(2)

r+m#Fzx,x € R and ify > 1
then there is no x € R such that
y = f(z). -

c) The function f is injective
because

flz) < f(y) ;

if r < y,z,y € R, but not surjec- T ' %%
tive as a map from R to R, be-
cause there exists no x € R such
that f(x) = —1. 2
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d) The function f is not injective
as f(z) = f(—x) and = # —x for
x # 0, nor surjective as there is
no x € R such that f(z) = —1.

Q©

Page 14, Problem 8. Let P be the set of polynomials of one real variable. If p(x) is such
a polynomial, define I1(p) to be the function whose value at x is

Ezxplain why I is a function from P to P and determine whether it is one-to-one and onto.

Solution. Every element p € P is of the form:
p(ﬂf) :ao+a1$+a2m2+...+an_1xn—1, QTER,

with ag,a1,--- ,a,_1 real numbers. Then we have

](p)((li‘):/ (a0+a1t+a2t2+"'+Gn_1t”_1)dt
0

a a Apy—
:a0x+_1x2+_2x3+...+—n 1:6”_
2 3 n

Thus I(p) is another polynomial, i.e., an element of P. Thus I is a function from P to P.
We claim that I is injective: If

p(z) = ap + a1z + ax? + 4 apy ™l

q(z) = by + byx 4 bpx® 4+ -+ + by_12" !
have I(p)(z) = I(q)(x),z € Rji.e.,

_ b b b,,_
a0$+ﬂx2+%x3+...+mmm:b0$+_1$2+_2x 4ot n—1
2 3 m 2 3 n

z".

Let P(z) = I(p)(z) and Q(z) = I(q)(z). Then the above equality for all z € R allows us to
differentiate the both sides to obtain

P'(x) = Q'(z) forevery x € R,
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in particular ag = P’(0) = Q'(0) = by. The second differentiation gives
P'(z) =Q"(x) for every z € R,

in particular a; = P"”(0) = Q”(0) = b;.
Suppose that with k € N we have P*)(z) = Q) (z) for every 2 € R. Then the differen-
tiation of the both sides gives

P () = QD (2)  forevery z € R,

in particular az; = P*TD(0) = Q*+1(0) = bpy 1. Therefore the mathematical induction
gives
ag =bo,a1 =b1, -+ ,am—1 =bp—1 and m =n,

i.e., p = q. Hence the function [ is injective.

We claim that I is not surjective: As I(p)(0) = 0, the constant polynomial ¢(z) = 1
cannot be of the form g(x) = I(p)(z) for any p € P, i.e., there is no p € P such that
I(p)(x) = 1. Hence the constant polynimial ¢ is not in the image I(P). Q

Page 19, Problem 3. Prove that:
a) The union of two finite sets is finite.

b) The union of a finite sent and a countable set is countable.
c) The union of two contable sets is countable.

Proof. a) Let A and B be two finite sets. Set C = AN B and D = AU B. First, let a, b
and ¢ be the total number of elements of A, B and C respectively. As C' C A and C C B,
we know that ¢ < a and ¢ < b. We then see that the union:

D =CU(A\C)U (B\C)

is a disjoint union, i.e., the sets C, A\C and B\C are mutually disjoint. Thus the total
number d of elements of D is precisely ¢ + (a — ¢) + (b — ¢) = a + b — ¢ which is a finite
number, i.e., D is a finite set with the total number d of elements.

b) Let A be a finite set and B a countable set. Set C' = AN B and D = AU B. Since
C' is a subset of the finite set A, C is finite. Let m be the total number of elements of C'
and {c1,ca, -+ ,¢m} be the list of elemtns of C. Let n be the total number of elements of A
and let {a1,az2, -+ ,an—m} be the leballing of the set A\C. Arrange an enumeration of the
elements of B in the following fashion:

B ={ci,c2, , Cm; bms1, b2, o )
Arranging the set A in the following way:

A= {a17a27 oty p—m,C1,C2, " 7Cm}7



6 SOLUTION SET FOR THE HOMEWORK PROBLEMS

we enumerate the elements of D = A U B in the following way:

a; forl<i<n-—m;
di =< Ci—pn—m forn—m<i<n;

bi—ntm fori>n.

This gives an enumeration of the set D. Hence D is countable.

c) Let A and B be two countable sets. Let A = {a,, : » € N} and B = {b, : n € N} be
enumerations of A and B respectively. Define a map f from the set N of natural numbers
in the following way:

f@Cn—-1)=a,, neN;

f(2n)=1b,, neN.

Then f maps N onto D = AU B. The surjectivity of the map f guarantees that f=!(d) # 0
for every d € D. For each d € N, let g(d) € N be the first element of f~1(d). Since
) n f=1(d") = 0 for every distinct pair d,d’" € D, g(d) # g(d') for every distinct pair
d,d" € D. Hence the map ¢ is injective. Now we enumerate the set D by making use of
g. Let di € D be the element of D such that g(d;) is the least element of g(D). After
{dy,da,--- ,d,} were chosen, we choose d,,+1 € D as the element such that g(d,1) is the
least element of g(D\{d1,ds,- - ,d,}). By induction, we choose a sequence {d,,} of elements
of D. Observe that 1 < g(d1) < g(d2) < --- < g(d,) < --- in N. Hence we have n < g(d,,).
This means that every d € N appears in the list {dy,ds,---}. Hence D is countable. @

Page 24, Problem 1. Give five ezamples which show that P implies QQ does not necessarily
mean that QQ implies P.

Examples. 1) P is the statement that z = 1 and Q is the statement that z2 = 1.

2) P is the statement that © < 1 and @ is the statement that = < 2.

3) Let A be a subset of a set B with A # B. P is the statement that x is an element of
A and @ is the statement that x is an element of B.

4) P is the statement that z is a positive real number and @ is the statement that x? is
a positive real number.

5) P is the statement that = 0 or z = 1 and @ is the statement that z(z—1)(z—2) = 0.
Q@

Page 24, Problem 3. Suppose that a,b,c, and d are positive real numbers such that a/b <
c/d. Prove that

g<a+c<f
b " b+d " d

Proof. The inequality a/b < c¢/d is equivalent to the inequality bc — ad > 0. We compare
two numbers by subtracting one from the other. So we compare the first two of the above
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three fractions first and then the second pair of the fractions:

atc a blat+c)—alb+d)  bc—ad

e = 0;
brd b b(b + d) bb+d)
¢ atc_cbb+d)—(at+c)d _ bc—ad >0
d b+d c(b+ d) ceb+d) T T
Therefore the desired inequalities follows. @

Page 24, Problem 4. Suppose that 0 < a < b. Prove that

a) a < +vab<b.
b) Vab < oFt.

Proof. a) We compute, based on the fact that the inequality a < b implies the inequality
va < Vb,
b=vVoVb > avb=Vab > aya = a.

b) We simply compute:

w0 2V
(va - Vi

S A LAY
2 e

where we used the fact that (z + y)? = 22 — 22y + y? which follows from the distributive
law and the commutativity law in the field of real numbers as seen below:
2=(r—y)x— (x—y)y by the distributive law

=a2? —yr —ay+y? =2> — 2zy +y* by the commutativity law.

(z —y)

Remark. In the last computation, is

(x—y)? =2 —2zy + y°

(01 (0 0
~\lo o ¥=\1-1 0

obvious?
If so, take
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(0 1 o 1 0\
2 (0 0) o (00 (10 (0 0,
“\o o) Y "o o) "= VLo o) 0o —1)°
- s (20 10\
T 22y + vy —(0 0)7’5(0 1)—($ y)”.

Therefore, the formula

and compute

(x—y)? =2 — 22y + y°

is not universally true. This is a consequence of the distributive law and the
commutative law which governs the field R of real numbers as discussed in the very early
class.

Page 24, Problem 5. Suppose that x and y satisfy 5 + £ = 1. Prove that 2 +y? > 1.
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Proof. The point (z,y) lies on the line:

r vy

A | L

513 (L)
which cuts through z-axis at (2,0) and y-axis at
(0,3). The line L is also discribed by parameter

(2t,3(1 —t)),t € R. So we compute

2?2 = (202 + (3(1 — 1)) =4t +9(1 — t)?

=42 + 912 — 18t + 9 (L)

=132 —18t+9 =13 (tz—%t+%)

e @be TN
foralltERasl—%<1. V)

Page 25, Problem 8. Prove that for all positive integers n,

P+ 4. 4nd=142+--+n)

Proof. Suppose n = 1. Then the both sides of the above identity is one. So the formula
hold for n = 1.
Suppose that the formula hold for n, i.e.,

P42+ 40P =14+2+ - +n)%
Adding (n +1)3 to the both sides, we get

1424 4+n°+n+1)°=1+2+ - +n)’+(n+1)°

2
1
— (@) + (n+1)* by Proposition 1.4.3

o (NP +4An+4\  (n+1)*(n+2)?
=(n+1) ( 1 )— 1

=(1+2+---+n+n+1)* by Proposition 1.4.3.

Thus the formula holds for n+1. Therefore mathematical induction assures that the formula
holds for every n € N. @
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Page 25, Problem 9. Letxz > —1 andn be a positive integer. Prove Bernoulli’s inequality:

(1+2)" > 1+ na.

Proof. If z > 0, then the binary expansion theorem for real numbers gives

1+z)"=1+nx+ <g>x2+ (§>az3+---+ <nﬁl>x"1+x”

>14+nx

as 22, 23,--- , 2" ! and 2™ are all non-negative. If —1 < x < 0, then the inequality is more

delicate. But we can proceed in the following way:
(1+2)"—1 :x((1+x)”—1 + (14 2)" 1 +---+(1+x)+1);

n>1+z)" ' +0+2)" P+ o+ (I+2)+1 asl+az<l,

As x < 0, we get
msgx<(1+x)”‘1+(1+x)”‘1+---+(1+m)+1>,
consequently the desired inequality:

(l—l—x)”—l:x((1+m)"_1+(1+m)"_1+---+(1+x)+1) > nz.

Page 25, Problem 11. Suppose that ¢ < d.

a) Prove that there is a ¢ € Q so that | — V2| < d — c.
b) Prove that ¢ — /2 is irrational.
c) Prove that there is an irrational number between ¢ and d.

Proof. a) Choose a; = 1 and b; = 2 and observe that
a?=1<2<4=0>b consequently a; < V2 < by.

Consider (a; + b1)/2 and square it to get

2
ay + by 9
=->2
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and put a; = a; and by = (a1 + b1)/2. Suppose that aq,as, -+ ,a, and by, by, - , b, were

chosen in such a way that
ar—1 + br_ 2
( k—1 k—1 ) < 2’

i) if
then ar = (akx—1 + brp—1)/2 and by = bg_1;

i) if
2
<ak—1 —2i-bk_1) )

then ax = ar_1 and by = (ag—1 + br_1)/2.

Thus we obtain sequences {a,} and {b;} of rational numbers such that

b -1 — Ak—-1
a1 <as <ag <o <o by <bp_q <---by<b and bk—ak:%;

afl<2<bfl, n €N, hence a,<V2<b,.

As by —a; = 1, we have b,, — a,, = 1/2". For a large enough n € N we have 1/2" < d — c.
Now we conclude

0<\/§—an§bn—an:2in<d—c and a, € Q.
Thus ¢ = a,, has the required property.
b) Set p = V2 —¢q. If p € Q, then v2 = p + ¢ € Q which is impossible. Therefore, p
cannot be rational.
¢) From (b), p = v/2 — ¢ is an irrational number and 0 < p < d — ¢ from (a). Thus we
get ¢ < c+p < d. Asseen in (b), ¢ + p cannot be rational. Because if ¢ + p = a is rational,
then p = a — ¢ has to be rational which was just proven not to be the case. @
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Problems.

1) Negate the following statement on a function f on an interval [a,b],a < b. The
function f has the property:

f(z) >0 for every x € [a,b].

2) Let
flx)=a*+bx+c, xcR.

What can you say about the relation on the constants b and c in each of the following

cases?
a)
f(x) >0 for every x € R.
b)
f(z) >0 for somx € R.
3) Let

f(x)=2*>+4x+3, xR

Which of the following statements on f is true? State the proof of your conclusion.

a)

f(z) <0 for some z € R;
b)

f(xz) >0 for some z € R;
c)

f(x) >0 for every x € R.
d)

f(x) <0 for every x € R.

Solution. 1) There exists an zy € [a, b] such that

f(l’o) < 0.

2-a) First, we look at the function f closely:

2 b2
f(x):x2+bx+c:x2+bx+z+c—z

(g 2+4c—b2>4c—b2 . R
=z 5 1 > 1 or every .
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The function f assumes its smallest value

b 4c — b2
/ (_§> T

at x = —g. Thus f(z) > 0 for every = € R if and only if

b 4c — b2
fl—=]= ¢ >0 if and only if 4c¢ > b
2 4

13

2-b) If 4¢ > b2, then f(z) > 0 for every x € R, in particular f(0) > 0. If 4c < b2, then

we have

f<—b+J2M) o

Therefore the condition that f(x) > 0 for some z € R holds regardless of the values of b

and ¢. So we have no relation between b and c.
3) First, we factor the polynomial f and
draw the graph:

f(x) =2 +42+3 = (z+3)(z + 1).

We conclude that f(z) <0 is equivalent to
the condition that —3 < z < —1. Therefore
we conclude that (a) and (b) are both true
and that (c) and (d) are both false.

Page 25, Problem 12. Prove that the constant
oo

1

e=> 5
k=0

1s an irrational number.

Proof. Set

| =

T k € N.

k
=2
=0

<
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Clearly we have 2 = 51 < 59 < 83 <--- < s < ---, i.e., the sequence {s;} is an increasing
sequence. If k£ > 3, we have

1 1 1

— 141 e

e R T T e s B S L I S S

11 1 1— &

<ldld ot — g — =1 2

ST+ldgtos bt g +1_%
<142=3.

Thus the sequence {si} is bounded. The Bounded Monotonce Convergence Axiom (MC)
guarantees the convergence of {s;}. Thus the limit e of {s;} exists and e < 3.
a) If n > k, then we have

sm—sp =1l by L
nooR T 21 " 3l K (k+1)! n!
U 1
B CRRR TRaTIw
N S S 1
(kD! (B 2)! n!
1
~ (k+1)!
x(1+ L - + ! - +——¥L——)
k+2  (k+2)(k+3)  (k+2)(k+3)(k+4) k+1)--n)
Since
k+1<k+2<k+3< < and ! > ! ! > >1
) n n o e J——
’ k+1" k+2k+3 n’
we have
L 1 L 1
k+12 7 (k+1D(k+2) k+1P " (k+D)(k+2)(k+3)
1 1
k+ D)1~ k+D)k+2)--n
and - .
I | 1 1= Gse=—=
n — < -
n Tk (h+D!;; k+Df " B+D! 1- g
1
<

k(k+ 1)
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Taking the limit of the left hand side as n — oo, we get

1 1
TS L) SR

b) Now suppose that e is rational, i.e., e = p/q for some p,q € N. Then we must have

1 1
B—sqg— and 0<q!(£—sq)<—.
q q-q q q
But now ¢!(p/q) is an integer and pls, is also because 2!, 3!,--- and ¢!, appearing in the
denominators of the summation of sg, all divide ¢!, i.e.,

o — ot (141 1 1 1
q'sq =q | 1+ +i+§+"'+a

= +qg+B4-q)+@-5 )+ + k- (E+1)q)+ g+l

Thus the number ¢!(p/q — s4) is a positive integer smaller than 1/¢, which is not possible.
This contradiction comes from the assumption that e = p/q, p, ¢ € N. Therefore we conclude
that there is no pair of natural numbers p, g such that e = p/q, i.e., e is an irrational number.

Q

Page 33, Problem 1. Compute enough terms of the following sequences to guess what
their limits are:

a)

o1
a, = nsin —.
n
b)
1\"
an:<1+—) .
n
c)
Apt1 = Ean +2, a1 = 5

Upi1 = ian(l —ap), a =0.3.
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Answer. a) It is not easy to compute sin1/2,sin1/3
and so on. So let us take a closer look at the
function sin x near z = 0:

Consider the circle of radius 1 with center 0, i.e.,
0A = 1, and draw a line 0B with angle ZA0B = .
Let C be the intersection of the line 0B and the X

circle. Draw a line CD through C and perpen- 0 D ’A

dicular to the line 0A with D the intersection of
the new line and the line 0A. So obtain the figure on the right. Now the length CD = sin .

We have the arc length AC = x and the line length AB = tanx. To compare the sizes of
x,sinz and tan x, we consider the areas of the triangle AOAC), the piza pie cut shape <0AC
and AOAB which are respectively (sinz)/2,2/2 and (tanz)/2. As these three figures are
in the inclusion relations:

AOAC C <0AC C AOAB,

we have )
tanx 1sinx

X
2 2 2  2cosx

Consequently we conclude that

Therefore we have

COoS (l) < msin <l> <1 and lim nsin (l) =1.
n n n—00 n

b) We simply compute a few terms:

1+ 3 L4142 42 —ol0
aa = —_ = —_ _— =
3 9 "271  “or
4
1 1 11 6-16+4-441
—(14+>) =14146-—+4.— —9
(i <+4> L T VIR T 256
_,96+16+1 103
n 256 -~ 7256’
1\° 5\ 1 5\ 1 5\ 1 1
—(14+2) =141 — — 4
o +5> * +(2> 25+<3)125+(4 625 3125

10-125+10-254+5-5+1 _21256

2 = .
3125 3125
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It is still hard to make the guess of the limit of (1 4+ 1/n)". So let us try something else.

(1N () n\ 1 n\ 1 1
an = +ﬁ =141+ 9 ﬁ—f— 3 E—f—”.—’— k ﬁ—f—”.—i—ﬁ
Inn—-1) 1nn-1)(n-2) Ilnn—-1)(n—-2)---(n—k+1)
21 n? +§ n3 +“‘+H nk
1nn-1)n-2)---2-1

n! n"

1\t 1 1 1 1 2
ni1 = (1 =24+ —(1- —(1- 1—
nt1 (+n+1) +2!( n+1)+3!< n-l—l)( n+1)
1 1 2 k
— (1= 1— 1=
++k!< n+1>( n+1> ( n—|—1>+
1 1 2
b (1 —) (1 =) (1=
(n+1)! n—+1 n+ n+1

As each term of a,,1 is greater than the corresponding term of a,,, we have a,, < an4+1,n € N,
i.e., the sequence {a,,} is increasing and bounded by e as a,, < s,, < e. Therefore we conclude
that the sequence {a,} converges and the limit is less than or equal to e.!

c) Skip.

d) Let us check a few terms:

5!
a1 =03, ay= §a1(1 —ap) = 0.525
5}

a3 = Jas(1 — ay) = 0.6234375

as =0.58690795898, a5 = 0.60611751666, ag = 0.59684768164
a7 = 0.6015513164, ag = 0.59921832534, ag = 0.60038930979, a19 = 0.5998049662

With ,
f(a:):gx(l—x):g(x—xQ):g<i—(%—x> >§§<1

'In fact the limit of {an} is the natural logarithm number e, which will be shown later.
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we have

0< f(z) <==0.625 forall ze€]|0,1],

0| Ut

and consequently

0<apnt1 = flap) <5 =0625, n>3.

| Ot

To compare a,, and a,+1 = f(a,), we consider

m—f(m):m—gm(l—m)

B 2z — 5(x — 2?) 3
N 2

_ 52? =3z z(5x — 3) ®
2 2

{ <0 forall ze]l0,0.6]
>0 forall x¢]0,0.6]

§

This means that a,+1 < a, if 0 < a,, < 0.6 and ap4+1 > a, if a, < 0 or a,, > 0.6. But
the case a,, < 0 has been excluded by the above arguments. From the computation of the
first three terms we observe that the sequence {a, } seems to oscillate. At any rate, if the
sequence {a,} converges, then we must have a = lim,,_, a,, = lim,, o ap41, i.€., we must
have a = f(a), which narrows the candidate of the limit down to either 0 or 3/5 = 0.6. Let

us examine the candidate 3/5 first. So we compute the error

16— 25z(1 — x)|
S_Exu_ww_ 10
2522 — 25z + 6] [(5z — 2)(bx — 3)]

10 10

3 1 3
G _ - 1
T 5‘ 2‘5(3: 5>+

3
r— =

= s o
o7 5

Therefore, if |z — 3/5| = §, then

<

- @

Thus if § < 1/5, then with » = (56 +1)/2 < 1 we have

'g—f@>3r&
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in other words

3 3 3
k k—1 k—2
= —ap| >T - —a >r - —a
5 n| = 5 n+1| Z 5 n+2
k-3 |3 3
> g_an—l—S > 2 g_an—l—k-

Therefore, if we get |3/5 — a,,| < 1/5 for some n € N, then we have

W
oo P T 5

But we know
= 0.6234375 — 0.6 = 0.0234375 < 0.2 = é

- —a
Therefore the limit of the sequence {a,} is 0.6 as seen in the first computation. @

Page 33, Problem 2. Prove directly that each of the following sequences converges by
letting € > 0 be given and finding N () so that

la —an| <€ for every n > N(e). (1)
a)
1+ 10
an = .
In
b)
1
a, =1+ I
c)
anp=3+27"
d)
n
an =
n+1

Solution. a) Obviously our guess on the limit a is @ = 1. So let us try with a = 1 to find
N (e) which satisfy the condition (1):

10
|1 —a,|=—-= <e forevery n> N(e),

In
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which is equivalent to the inequality:

10 100
Vn>— en>—
g €

for every n > N(g). Thus if we choose N(¢) to be

where [z],x € R, means the largest integer which is less than or equal to x, i.e., the integer
m such that m <z < m + 1, then for every n > N(¢), we have

100 100
< N(e) <n, hence &*>-— and e>

10
g2 - n In

This shows that 10
nli_)ngo (1+ %> = 1.

b) It is also easy to guess that the limit a of {a,} is 1. So let € > 0 and try to find N(e)
which satisfy the condition (1) above which is:

= |1 — ay,|.

1
n

So we look for the smallest integer N which satisfy

=|1—a,| <e forevery n> N(e).

1
< e equivalently = < ¥/n,
£

5=

which is also equivalent to

So with N(e) = [1/€3] 4+ 1, if n > N(g), then

1
— < N(e) <n consequently

g3 In

d) First, we make a small change in the form of a,,:
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and guess that the limit a of {a,} would be 1. So we compute:

: 2 S SR (e el
\/n+1 ¢n—+1<m+ﬁ>

_ n+1—n
n+1+\/ n—|—

Hence if n > [1/e] + 1, then 1/n < 1/([1/e] +1) < 1/(1/e) = ¢, i.e.,
1-— " _|<c forevery n> N (e)
n+1 yon= '

Page 33, Problem 3. Prove directly that each of the following sequences converges by
letting € > 0 be given and finding N(g) so that

SIP—‘

Q

la —ay| <e for every n > N(e). (1)
a)
2
apn=5———  for n>2
Inn
b)
_3n+1
" n42
c)
n?+6
an—2n2 5 for n>2
d)
2n
ay = —.
n!

Solution. a) From the form of the sequence, we guess that the limit a would be 5. So we

try 5 as a:
15 | o+ 2 2
P an — = 5
Inn Inn

which we want to make smaller than a given ¢ > 0. So we want find how large n ought to

be in order to satisfy the inequlity:
2
> —.
In2
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This inequality is equivalent to Inn > 2/e¢. Taking the exponential of the both sides, we
must have n > exp(2/¢). So if we take

N(e) = Fxp(g)}%—L

then for every n > N(¢e) the inequality (1) holds.
b) First we change the form of each term slightly:
3n+1 3+1
an = = y
n+2 142

to make a guess on a. This indicates that the limit a would be 3. So we try to fulfil the
requirement of (1) with a = 3:
5 3n+1| [3(n+2)—0GBn+1)| 5 5
n+2

< —.
n+ 2 n+2 n

So if the inequality 5/n < € holds, then |3 —a,| < € holds. Thus N(e) = [5/¢] + 1 gives that
|5 — a,| < e for every n > N(e).
c) We alter the form of the sequence slightly:
n? + 6

1
= onz 2 9_ 2
in order to make a good guess on the limit a, which looks like 1/2. Let us try with this a:

(nz—l)—(n2+6)’: 7

for n > 2.

1 n?+6
2n2 — 2 2n2 — 2’

2 2n%2-2

If n > 2, then (2n? —2) —2(n —1)2 = 4n > 0, so that 2(n — 1)2 < 2n? — 2 and therefore

7
5_2712—2‘ S om—1)2

’1 n®+6

Thus if N(e) = [ 7/(25)] + 2, then for every n > N (e) we have

1 n*+6 _ T 7 _ 7
2 2n2 -2 2(n—1)2_2(N(5)—1)2_2<[ 7}+1>2
2e
7
<2.l:€'
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Therefore
lim a, = =
d) With
an =2"/n!

we look at the ratio a,/any1:

2m ! 1
an :_'(n+):n+ >2 for n>3.
an+1 n! on+l1 2

Therefore, we have for every k > 2

K . as 8 1 1 1
as > 2%as4 equivalently ap4s < ok —g.9F 3.9k 2 < oh 1 < 1

So for any e > 0if n > N(e) = [1] 4+ 5, then we have 0 < a,, <. @

Page 24, Problem 6. Suppose that a,, — a and let b be any number strictly less than a.
Prove that a,, > b for all but finitely many n.

Proof. The assumption a > b yields b — a > 0 so that there exists N € N such that
la — an,| < b—a for every n > N, equivalently

b—a<a—a,<a—b forevery n>N, hence b < a, forevery n > N.

Thus the total number of n with b > a,, is at most N — 1 which is of course finite. Thus
a, > b for all but finitely many n. @

Page 34, Problem 9. a) Find a sequence {a,} and a real number a so that
lan+1 — al <|an —al for each n,

but {a,} does not converge to a.
b) Find a sequence {a,} and a real number a so that a, — a but so that the above
inequality is violated for infinitely many n.

Answer. a) Take a,, = 1/n and a = —1. Then

np1—a=——+1<=+1=|a,—a| but a,»a.
|an+1 — al n+1+ n+ la, —al but a, »a

b) Set
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Then we have

and a, — 0.

% for odd n;
ap =

Qi for even n
n

If n is odd, then
3 1

— > =a,.
on+1) 20 "

This occurs infinitely many times, i.e., at every odd n. @

An+1 =

Page 39, Problem 1. Prove that each of the following limits exists:

a)

1\2
an:5(1+\3/ﬁ) .

3n+1
a, = .
" n-+ 2

B n?+6
=32 o
5+ (E)

- 2n+5
2 + 3n—2

Qn

Proof. a) First lim,, o, 1//n = 0 because for any given € > 0 if n > N(e) = [1/&3]+ 1 then
1

1 1 1 1
VEVRD e g O

Hence we get

1 2

by the combination of Theorem 2.2.3, Theorem 2.2.4 and Theorem 2.2.5 as seen below:

1 17
1+ T — 1 by Theorem 2.2.3 = (1 + ?’—ﬁ) — 1 by Theorem 2.2.5

4

1 \2
5 (1 + %) — 5 by Theorem 2.2.4.
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b) We change the form of each term a,, slightly:
3n+1 3+
af?’L = an = =
n+2 2+

We know that 1/n — 0 and 2/n — 0 as n — oo. Thus we get the following chain of
deduction:

3 o[3 =

1 2
3+ ——3 and 24 — — 2 by Theorem 2.2.3
n n

4

3+1 3
5 — = by Theorem 2.26.
2+ = 2
c) We change the form of each term a,, in the following way:
n?+6  1+-5
3n?2—-2 3-3%°
As 1/n — 0, Theorem 2.2.5 yields that 1/n? — 0 and therefore
1+-% 1+6-0 1
f — + = — by Theorem 2.2.4 and Theorem 2.2.6.
3— 5 3—-2-0 3

d) As seen before, we have

apn =

924 3
i<l—>0 and 2n—|—5: iy —>g.
3" T n 3n—2 3-— % 3
Thus we get
2
54 (&) 54+4-0-0 15
n = 2nt5 2 T g
2+ In—2 2+ 3
by a combination of Theorem 2.2.3, Theorem 2.2.4 and Theorem 2.2.6. @

Page 39, Problem 6. Let p(x) be any polynomial and suppose that a,, — a. Prove that
lim_p(an) = p(a).
Proof. Suppose that the polynomial p(x) has the form:

p(x) = pra® + pr1a® ™ 4 pra £ po.
We claim that a, — a for each £ € N. If £ = 1, then certainly we have the convergence:

al =a, — a=a'. Suppose a’~! — a’~1. Then by Theorem 2.2.5 we have a’, = a’~'a,, —
a*~'a = a*. By mathematical induction we have af, — a* for each £ € N. Therefore, each

term peal, converges to pea’ for £ = 1,2,--- k. A repeated use of Theorem 2.2.3 yields that
pan) = pray, + pr—1ay~ " + -+ pran +po — pra® + pr1a" 4+ - + pra+po = pla),
Q@
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Page 39, Problem 7. Let {a,} and {b,} be sequences and suppose that a,, < b, for all n

and that a,, — oo. Prove that b, — 0.

Proof. The divergence a,, — oo means that for every M there exists N € N such that
an, > M for every n > N. The assumption that a, < b, gives M < a, < b, for every

n > N. Hence b,, — 0.

Page 39, Problem 9. a) Let {a,} be the sequence given by

1
Apt+1 = §an +2, a1 =0.5

Prove that a,, — 4.
b) Consider the sequence defined by

Opt1 = Oy, + 2.

Show that if |a| < 1, then the sequence has a limit independent of a;.

Proof. a) Based on the hint, we compute

1 1 1
an+1—4:§an+2—4:§an—2:5((1”—4).
Hence we get
|an—4| = §|an_1—4| = ?|an_2—4| e W|a1—4| =
b) We just compute
21 —a)—2
Upt1 — —— = Qap + 2 — = aa, +
1—« 1—« 1—«

Hence {a,} converges and

which is independent of a;.

Q©
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Page 40, Problem 10. For a pair (z,y) of real numbers, define
Gz )l = Va2 + 2.

a) Let x1,x9,y1,Y2 be real numbers. Prove that

2122 + 12| < \/m% +x§\/y? +3-
b) Prove that for any two dimensional vectors (z1,y1), (T2,92) € R?

(21, 91) + (22, y2) | < [[(z1, 90) || + [[(22, y2)]I-

c) Let pp, = (2, yn) be a sequence of points in the plane R? and let p = (x,y). We say
that p, — p if ||pn — p|| — 0. Prove that p, — p if and only if x,, — x and y, — y.

Proof. a) Let us compute:
(@1 +23) (41 +42) — (@131 + 22y2)*
= 2y} +alys + o3yl +a5ys — (2TY) + 221y 2y + 25y3)

= 2Tys + 23Y7 — 2219172y = (T1y2 — Tay1)? > 0.

b) We also compute directly:

(z1,91) + (@2, y2) || = [[(m1 + 22,1 + v2)||* = (21 + 22)* + (Y1 + y2)?
= o] + 20120 + @5 + YT + 2012 + 5 = @] + 23 + 2(@1@2 + y1y2) + U5 + 5

Sfr?+yf+2\/$?+y%\/w§+y§+x§+y§

— <\/x% + 23 + \/y% + y§)2 = (||(x1,y1)|| 4 ||(x2,y2)||)2_

This shows the inequality:

(1, 91) + (22, y2) | < [[(z1, 90) || + [[(22, y2)[-

c¢) Since we have the inequalities:

max{’xn - x‘v ’yn - y’} < \/<xn - CL‘)Q + (yn - y)2 < 2maX{|$n - .’L”, |yn - y‘}v

show that ||p, —p| — 0 if and only if max{|z,, — |, |y, —y|} — 0 if and only if |z,, —x| — 0
and |y, —y| — 0. Q
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Page 50, Problem 1. Prove directly that a,, =1+ ﬁ 1s a Cauchy sequence.

Proof. We just compute for m < n:

i) )

1 2 )
<——|——<— since m < n.

vm o V/n T Vm

So if € > 0 is given, then we take N to be [(2/¢)?] + 1 so that for every n > m > N we have

2 2 B
e e Ve

Page 50, Problem 2. Prove that the rational numbers are dense in the real numbers.

Proof. We have to prove that for every e > 0 (a —e,a +¢) NQ # (). Choose m = [1/¢] +1
so that 1/m < e. If a —e > 0, then the Archimedian property of R yields the existence of
k € N such that

lam — an| <

N

Q©

k 1
—=k-— >a—c¢.
m m
Let n be the first such a number. Then we have
n—1 n n—1

1 1
<a—e< — = +—<a—-e¢+—<a—ec+¢e=a.
m m m m m

Therefore, we conclude that

n n
a—e< — <a therefore — € (a—e,a+e)NQ.
m m

If a — e < 0, then we apply the Archimedian property of R to the pair 1/m and € —a > 0
to find a natural number k € N such that

1 k
e—a<k-—=—.
m m

Let n € N be the smallest natural number such that n/m > e — a, so that

n—1 n . n 1—n n 1
<e—a<—, equvalently — — <a—-e< = 4,
m m m m m  m

As we have chosen m € N so large that 1/m < e, the above inequality yields

1—n 1 n n . 1—n

=———<eg——<e+(a—¢e)=a, ie, a—e<——<a.
m m m m m
Therefore we have

1—n

€(a—¢e,a+e)NQ consequently (a—e,a+¢e)NQ#

for arbitrary € > 0. Hence a is a limit point of Q.
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Page 59, Problem 3. Suppose that the sequence {a,} converges to a and d is a limit point
of the sequence {b,}. Prove that ad is a limit point of the sequence {a,by}.

Proof. By the assumption on the sequence {b, }, there exists a subsequence {b,, } of the
sequence {b,} such that
lim by, = d.

k—oo

The subsequence {ay,, by, } of the sequence {a,b,} converges to ad because the subsequence

{an, } of {a,} converges to the same limit a. Hence ad is a limit point of {a,b, }. Q
Page 59, Problem 6. Consider the following sequence: a; = %; the next three terms
are i, %, %; the next seven terms are %, i, %, %, %, %, %; -+ and so forth. What are the limit

points.

Answer. The sequence {a,} consists of the numbers {k/2" : k = 1,2,--- 2" — 1,n € N}.
Fix z € [0,1]. We are going to construct a subsequence {b,} of the sequence {a,} by
induction. For n = 1, choose

0 if z< %;
k= S
I if g<ao<1.
For each n > 1, let k,, be the natural number such that

kn ko, +1
2—n§$< on .

Then the ratio b, = k, /2" is in the sequence {a,} and

1
\bn—x|<2—n—>0 as n — oo.

Hence lim,,_,o b,, = x. Therefore, every x € [0,1] is a limit point of {a,, }. Thus the sequence
{a,} is dense in the closed unit interval [0, 1]. Q

Page 59, Problem 8. Let {I} : k € N} be a nested family of closed, finite intervals; that is,
Iy D I D ---. Prove that there is a point p contained in all the intervals, that is p € N7 1.

Proof. The assumption means that if Iy = [ag, bg], k € N, then
ap <ag <o <ap < <bp <bg1 << < by,
The sequence {ay} is increasing and bounded by any of {b,}. Fix k € N. Then we have

a= lim a, <b, for keN,

n—oo
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where the convergence of {a,,} is guaranteed by the boundedness of the sequence. Now look
at the sequence {by} whis is decreasing and bounded below by a. Hence it converges to
b € R and a < b. Thus the situation is like the following:

a1 <ay<- - <ap < - ra<b< - <bp <bpog << by < by
Hence the interval [a, b] is contained in the intersection N2, I;. Any point p in the interval
[a,b] is a point of N2, I;; in fact [a,b] = NP2 Ij. Q

Page 59, Problem 9. Suppose that {x,} is a monotone increasing sequence of points
in R and suppose that a subsequence of {x,} converges to a finite limit. Prove that {x,}
converges to a finite limit.

Proof. Let {x,, } be the subsequence converging to the finite limit zo. As ny < ng < --- <
ng < ---, we have k < ny, for every k € N. If ¢ > 0 is given, then choose K so large that
|xn, — 20| < € for every k > K, ie., xg—e < xp,, < xq for every k > K. Set N = ng. Then
if m > N, then we have

Lo — € < Tpg :CL’NSCEmS-’Enm < xg.
Hence we have 0 < 29 — z,, < ¢ for every m > N. Hence {x,} converges to the same limit
Zo. @

Page 79, Problem 3. Let f(z) be a continuous function. Prove that |f(x)| is a continuous
function.

Proof. Let x € [a,b] be a point in the domain [a, b] of the function f. If € > 0 is given, then
choose a § > 0 so small that |f(x) — f(y)| < € whenever |x —y| < d. If |x — y| < 0, then

[1f(@)] = [fW)]] < f(@) — fly)| <e.

Hence |f| is continuous at z. Q

Page 79, Problem 5. Suppose that f is a continuous function on R such that f(q) = 0
for every q € Q. Prove that f(x) =0 for every x € R.

Proof. Choose x € R and € > 0. Then there exists § > 0 such that |[f(z) — f(y)| < €
whenever |z —y| < 6. Take ¢ € QN (x — §,x + §), then

[f(2)] = [f(x) = flg)] <e.

Thus |f(x)| is less than any € > 0 which is possible only when |f(z)| = 0. @
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Page 79, Problem 7. Let f(x) =3x — 1 and let € > 0 be given. How small § be chosen
so that |z — 1| < e implies |f(z) — 2| < e?

Answer. To determine the magnitude of ¢, assume that |x — 1| < ¢ and see how the error
becomes:

f(z) —2| =3z —1—2| = |32 — 3| = 3|z — 1] < 30.
Thus if 30 < ¢, i.e., if § <¢e/3, then |x — 1| < § implies |f(x) — 2| < €. Q
Page 79, Problem 8. Let f(x) = x? and let £ > 0 be given.
a) Find a 0 so that |x — 1| < § implies |f(x) — 1| < e.
b) Find a é so that |x — 2| < & implies |f(x) — 2| < e.
¢) If n > 2 and you had to find a § so that |x —n| < & implies | f(x) — n?| < e, would
the & be larger or smaller than the & for parts (a) and (b)? Why?

Answer. a) Choose 6 > 0 and see how the error grows from |z — 1| < 4:
[f(@) =1 =]z = 1| =z + 1)z - D] = |z + 1|z — 1|
<lz+1lld=]z—1+1416 < (Jlz —1]+2)0
< (6 +2)0.
So we want to make (0 4+ 2)J < e. Let us solve this inequality:
0>6°4+20—e=(0+12-c—-1 & e+1>(0+1)?
=
—Ve+1-1<6<Ve+1-1.

But we know that § must be positive. Hence 0 < § <Ve+1—-1=¢/(vVe+1+1). If § is
chosen in the interval (0, + 1 — 1), then the above calculation shows that

lz—-1/<6 = |f(z)—1|<e.
b) Now we continue to examine the case |z — 2| < §:
f(z) =4 =|2® = 4] = |(z + 2)(z = 2)| = |+ 2/]z — 2|

<Slz+2| =0z —2+4] <i(lxr —2|+4)

< (6 +4).

So we want to make (0 4+ 4)d < e, equivalently:
e>060+4)=02+45 & 6°4+46-e<0
-

—\/g+4—2§5§\/s+4—2=(Vm-2>(¢w—4+2) €

Ve+4+2 Ve r4+2
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Hence if we take 0 < § < &/(v/e + 4+ 2), then
z—2|<d = |f(x)—4|<e.
c) Similarly, we examine the case |z —n| < §:
[f(z) = n?| = |2® = n®| = |z + nllz — n| < bz +n]
<dlx —n+2n| <(lx —n|+2n) <65+ 2n).
So we want to make (6 + n)d < e, equivalently:
e>60+4)=6+2n0 o P 4+2m6—e<0
=
_m_ngégm_n:(\/€+n2—n)(\/€+n2+n): € '
Ve+nZ+n Ve+n? +n
Hence if we take § > 0 so small that 0 < § < ¢/(ve + n2 4+ n), then
lt—n|<d = |f(zx)—n|<e.
The largest possible § = £/(ve + n2 +n) is squeezed to zero when n glows indefinitely.
Page 79, Problem 11. Let f(z) = /x with domain {x : x > 0}.
a) Let e > 0 be given. For each ¢ > 0, show how to choose § > 0 so that |x —c| < §

implies |/x — \/c| < €.

b) Give a separate argument to show that f is continuous at zero.

Solution. a) Once again we examine the growth of error by letting |x — ¢| < ¢ and compute:

VE— Vel = Va—cFo— =

|z — | )
Vr—c+c++/c T Ve-d+4/c

(under the assumption ¢ < g)

J
Si
Ve
- 24
p— ﬁ'
Thus if 0 < § < min{c/2,e/¢/2} , then
lt—c| <6 = |Vo—+/|<Le.

Hence f is continuous at ¢ > 0.
b) If 0 <z <6, then

Ve — V0| = vz < V6.
Hence if 0 < § < €2, then
0<2<d =0<Vr<e.

Therefore f is continuous at 0. @



