The Admissibility of PSL(2,7) and SL(2,7)

by

Danny Goldstein and Murray Schacher

Def: Let G be a group and K a field. We say G is K-admissible if there is a finite-dim central division algebra D over K with G the Galois group of a subfield of D over K.

If K is a number field, then G so occurs if and only if G is the Galois group of a maximal subfield of some D.

Such occurences are solutions of a *local-global* principle: Let L/K be a G-Galois extension of K. Then L fits inside a div ring central over K if and only if: every Sylow subgroup P of Gis contained in the decomposition group $G_q =$ Gal (L_q/K_q) for at least two *q*-adic completions K_q of *K*. The two *q*'s depend on *P*.

Example: Let $f(x) = x^4 + 1$. Then any central division ring over Q containing a root of f(x) is inf dimensional.

Theorem

- 1. Any finite group G is admissible over some number field.
- 2. If G is Q admissible, then every Sylow subgroup of G is meta-cyclic.

The converse of 2. is open; it is true for solvable G (Sonn), and all the alternating and symmetric groups satisfying the Sylow meta-cyclic condition.

The A_n and their double covers

The alternating groups A_n have a unique double cover, which we refer to as \tilde{A}_n .

Suppose $Gal(L/K) = A_n$; we can realize L as the splitting field of a poly $f(x) \in K[x]$ with square disc. When can L be extended to \tilde{L} with $Gal(\tilde{L}/K) = \tilde{A_n}$?

Serre's Condition

Let M = K[x]/(f). Diagonalize the quadratic form tr(x^2) on M, resulting in $D = (a_1, a_2, \dots, a_n)$. Set $W = W(f) = \prod_{i < j} (a_i, a_j)$; $W \in Br_2(K)$.

Serre: \tilde{L} exists if and only if W = 0.

Mestre: Let $f(x) \in K[x]$ be a poly of degree n with square disc. Then there is a poly $q(x) \in$

K[x] of degree n-1 so that p(x) = f - tq has Gal group A_n over K(t). Also W(f) = W(p).

Consequence: (Feit, Sonn): A_n and $\tilde{A_n}$ are Q-admissible infinitely often for n = 5, 6, 7.

The simple group of order 168

It is PSL(2,7), GL(3,2), or the automorphism group of the Fano plane. Call it G.

G subset A_7 , and the restriction of the double cover $\tilde{A_7}$ produces the double cover SL(2,7) of G.

Mestre1: *G* has a generic Galois construction over any number field.

Mestre2: Let f(x) be a poly of degree 7 with square disc and Galois group contained in G.

Then there is a poly q(x) of degree 6 so that p(x) = f - tq has Galois group G over K(t).

Theorem (Allman-Schacher): *G* is admissible over a number field *K* if and only if either $\sqrt{-1} \notin K$ or *K* has two primes over 2.

So what about SL(2,7)? Bad news: The passage from f to p no longer preserves trivial Witt invariant!

magma output comes here ...

Question: Is SL(2,7) admiss over Q inf often???

Let $0 \neq W = W(t) \in Br_2(Q(t))$.

Theorem: (Fein-Saltman-Schacher) The set of $t_0 \in \mathbf{Q}$ with $0 \neq W(t_0)$ is infinite. Suppose W(s) = 0 for some $s \in \mathbf{Q}$. Serre wonders: must the set of such s be infinite ???

If yes, SL(2,7) is Q-admiss infinitely often.

Special Case:

(Using W = (-1, f(t)) as a model)

Let f(t) be an irred poly in Q(t) of odd degree. Then f represents a sum of two squares infinitely often ????

Warning: For this it is necessary to allow *rational* values, even if f(t) is monic with integer coeffs. The End