Contents

1 Fundamental concepts 2
2 The functor $\pi_1 : \text{Ho}(\text{Top}_*) \to \text{Grp}$ 3
3 Basic covering space theory and $\pi_1(S^1,\ast)$ 5
4 The fundamental group of a CW-complex 6
5 Van Kampen’s Theorem 9
6 Further covering space theory 11
7 Hawaiian Earring 16
1 Fundamental concepts

Definition 1.1. A (locally small) category \mathcal{C} consists of the following data:

- a class of objects $\text{ob}(\mathcal{C})$;
- for objects $a, b \in \mathcal{C}$, a hom-set
 $$\mathcal{C}(a, b) = \{ f : a \to b \}$$
 containing all morphisms from a to b;
- for objects $a, b, c \in \mathcal{C}$, a composition function
 $$\mathcal{C}(a, b) \times \mathcal{C}(b, c) \to \mathcal{C}(a, c), (f, g) \mapsto g \circ f.$$

We require composition to be associative, and there to exist identity morphisms $1_a \in \mathcal{C}(a, a)$.

Definition 1.2. Suppose \mathcal{C} and \mathcal{D} are categories.

A functor $F : \mathcal{C} \to \mathcal{D}$ consists of the following data:

- a (class-)function $F : \text{ob}(\mathcal{C}) \to \text{ob}(\mathcal{D})$, $c \mapsto Fc$;
- for objects $a, b \in \mathcal{C}$, a function on hom-sets $\mathcal{C}(a, b) \to \mathcal{D}(Fa, Fb)$, $f \mapsto F(f)$.

If $f : a \to b$ and $g : b \to c$, we require that $F(g \circ f) = F(g) \circ F(f)$.

Moreover, for every object $a \in \mathcal{C}$, we demand that $F(1_a) = 1_{Fa}$.

Example 1.3.

1. The free vector space functor $\textbf{Set} \to \textbf{Vect}_R$.
2. The dual vector space functor $(-)^* : \textbf{Vect}_R^{\text{op}} \to \textbf{Vect}_R$.
3. The forgetful functors $\textbf{Ab} \to \textbf{Grp} \to \textbf{Set}$.
4. The functor $\textbf{SmMan} \to \textbf{SmMan}$ which takes M to its tangent bundle TM, and a smooth map f to its derivative Df.
5. The DeRham cochain complex $\Omega^* : \textbf{SmMan}^{\text{op}} \to \textbf{coCh}_R$.

Definition 1.4. The category of topological spaces \textbf{Top}.

The category of based topological spaces \textbf{Top}_*.

Definition 1.5. $f_0, f_1 : X \to Y$ are homtopic if there exists a map $F : X \times I \to Y$ such that

$$\begin{array}{ccc}
X \times 0 & \xrightarrow{f_0} & X \times I & \xrightarrow{f_1} & Y \\
\downarrow & & \downarrow & & \downarrow \\
X \times 1 & & & & \end{array}$$

commutes. F is called a homotopy. We often write $F_t : X \to Y$ for the restriction of F to $X \times t$.

Suppose \(A \subset X \). \(f_0, f_1 : X \rightarrow Y \) are homotopic rel \(A \) if they are homotopic via a homotopy \(F \) such that \(f_0|_A = F_t|_A = f_1|_A \) for all \(t \in I \).

\(f_0, f_1 : (X, x) \rightarrow (Y, y) \) are based homotopic if the underlying maps \(f_0, f_1 : X \rightarrow Y \) are homotopic rel \(x \).

Definition 1.6. The homotopy category of space \(\text{Ho}(\text{Top}) \).

The homotopy category of based space \(\text{Ho}(\text{Top}_*) \).

The isomorphisms in \(\text{Ho}(\text{Top}) \) are called homotopy equivalences.

The isomorphisms in \(\text{Ho}(\text{Top}) \) are called based homotopy equivalences.

Definition 1.7. A space \(X \) is called a CW-complex if it can be written as a union \(\bigcup_{n \in \mathbb{N}} X^n \) and the following conditions hold.

1. \(X^0 \) is a discrete topological space.
2. The \(n \)-skeleton \(X^n \) is built from \(X^{n-1} \) by attaching \(n \)-cells. That is,
 - we have a collection of attaching maps \(\{ \varphi_{\alpha} : S^{n-1}_{\alpha} \rightarrow X^{n-1} \} \);
 - \(X^n = \bigsqcup_{x \in \partial D^n_{\alpha}} D^n_{\alpha} \cup \varphi_{\alpha}(x) \).
3. \(A \subset X \) is closed if and only if for all \(n \in \mathbb{N} \), \(A \cap X_n \) is closed in \(X_n \).

A based CW-complex \((X, *)\) is a CW-complex together with a choice of basepoint \(* \in X^0\).

Definition 1.8. Suppose \(X \) is a CW-complex.

\(X^n \) is called the \(n \)-skeleton of \(X \). By convention, \(X^{-1} = \emptyset \) (or \(* \) in the based setting).

As a set, \(X^n = \bigsqcup_{\alpha} e^n_{\alpha} \sqcup X^{n-1} \), where \(e^n_{\alpha} = D^n_{\alpha} \setminus \partial D^n_{\alpha} \). \(e^n_{\alpha} \) is called an \(n \)-cell.

We have characteristic maps \(\Phi : D^n_{\alpha} \rightarrow X^n \) making the following diagram commute:

\[
\begin{array}{ccc}
\bigcup_{\alpha} S^{n-1}_{\alpha} & \xrightarrow{\bigcup_{\alpha} \varphi_{\alpha}} & X^{n-1} \\
\downarrow & & \downarrow \\
\bigcup_{\alpha} D^n_{\alpha} & \xrightarrow{\bigcup_{\alpha} \Phi_{\alpha}} & X^n.
\end{array}
\]

In fact, this diagram is a pushout in \(\text{Top} \) (in case you know more category theory).

2 The functor \(\pi_1 : \text{Ho}(\text{Top}_*) \rightarrow \text{Grp} \)

Definition 2.1. Suppose \(X \) is a space. A path in \(X \) is a map \(p : I \rightarrow X \).

Two paths \(p_0, p_1 : I \rightarrow X \) are homotopic if they are homotopic rel \(\partial I \). We write \(p_0 \simeq p_1 \).

A path \(l : I \rightarrow X \) with \(l(0) = l(1) \) is called a loop.

Definition 2.2. Suppose \(p, q : I \rightarrow X \) are paths and that \(p(1) = q(0) \). We write \(p \cdot q : I \rightarrow X \) for the path

\[
(p \cdot q)(x) = \begin{cases}
 p(2s) & \text{if } s \in [0, \frac{1}{2}]; \\
 q(2s - 1) & \text{if } s \in [\frac{1}{2}, 1].
\end{cases}
\]

\(p \cdot q \) is called the concatenation of \(p \) and \(q \). We write \(\overline{p} : I \rightarrow X \) for the inverse path \(\overline{p}(s) = p(1 - s) \).
Lemma 2.3. The relation of homotopy on paths with fixed endpoints in any space is an equivalence relation.

Definition 2.4. Suppose \((X, x)\) is a based space. Then \(\pi_1(X, x)\) is the set of equivalence classes of loops starting (and ending) at \(x\).

Theorem 2.5. Suppose \((X, x)\) is a based space. Then \(\pi_1(X, x)\) is a group under the operation

\[[l][l'] = [l \cdot l'] \]

The constant loop \(c : I \to x \to X\) is the identity element.
We call \(\pi_1(X, x)\) the fundamental group.

Theorem 2.6. Suppose \(f : (X, x) \to (Y, y)\) is a map of based spaces. Then

\[f_* : \pi_1(X, x) \to \pi_1(Y, y), \ [l] \mapsto [f \circ l] \]

is a group homomorphism. We call \(f_*\) the homomorphism induced by \(f\).
Moreover, \(\pi_1\) defines a functor

\[Ho(Top_\ast) \to Grp. \]

It is a categorical argument to see that a based homotopy equivalence induces an isomorphism on fundamental groups. Unbased homotopy equivalences also induce isomorphisms on fundamental groups but seeing this requires a little more thought.

Proposition 2.7. Suppose \(X\) is a space, \(x_0, x_1 \in X\), and that \(p : I \to X\) is a path from \(x_0\) to \(x_1\). Then

\[\beta_p : \pi_1(X, x_1) \to \pi_1(X, x_0), \ [l] \mapsto [p \cdot l \cdot \bar{p}] \]

is an isomorphism of groups.

Definition 2.8. We call a space \(X\) simply-connected if it is path-connected and has trivial fundamental group.

Proposition 2.9. A space \(X\) is simply-connected if and only if there is a unique homotopy class of paths connecting any two points in \(X\).

Lemma 2.10. Suppose \(X, Y\) are spaces, \(x \in X\), and \(F : X \times I \to Y\) is a homotopy. Let \(p : I \to X\) be defined by \(p(t) = F(x, t)\). Then

\[
\begin{array}{ccc}
\pi_1(Y, F_0(x)) & \xrightarrow{\beta_p} & \pi_1(Y, F_1(x)) \\
\pi_1(X, x) & \xleftarrow{(F_0)_*} & \pi_1(X, x) \\
\pi_1(X, x) & \xrightarrow{(F_1)_*} & \pi_1(Y, F_1(x)) \\
\end{array}
\]

commutes. In particular, \((F_0)_*\) is an isomorphism if and only if \((F_1)_*\) is an isomorphism.

Theorem 2.11. Suppose \(X\) and \(Y\) are spaces, \(x \in X\), and \(f : X \to Y\) is a homotopy equivalence. Then the induced homomorphism \(f_* : \pi_1(X, x) \to \pi_1(Y, f(x))\) is an isomorphism.
3 Basic covering space theory and $\pi_1(S^1, *)$

Definition 3.1. Suppose X is a space. A covering space of X is a space \tilde{X} together with a map $\pi : \tilde{X} \to X$. The map is required to have the following property:

- for all $x \in X$, there exists an open set U_x in X containing x such that

$$\pi^{-1}(U_x) = \bigcup_{\tilde{x} \in \pi^{-1}(x)} U_{\tilde{x}}$$

and for all $\tilde{x} \in \pi^{-1}(x)$, $\pi|_{U_{\tilde{x}}} : U_{\tilde{x}} \to U_x$ is a homeomorphism.

Such a U_x is called an evenly covered neighborhood of x.

Example 3.2. $\pi : \mathbb{R} \to S^1$, $t \mapsto (\cos(2\pi t), \sin(2\pi t))$ is a covering map.

Theorem 3.3. Suppose $\pi : \tilde{X} \to X$ is a covering space.

\[
\begin{array}{ccc}
Y & \xrightarrow{\tilde{f}} & \tilde{X} \\
\downarrow{y \mapsto (y,0)} & \quad & \downarrow{\pi} \\
Y \times I & \xrightarrow{F} & X
\end{array}
\]

Given a homotopy $F : Y \times I \to X$, and a map $\tilde{f} : Y \to \tilde{X}$ lifting F_0, there exists a unique homotopy $\tilde{F} : Y \times I \to \tilde{X}$ lifting F with $\tilde{F}_0 = \tilde{f}$.

Proof. First, fix $y_0 \in Y$. We’ll construct the lift near y_0.

Let $t \in I$. We can find an open $V_t \subset Y$ containing y_0 and an open (in I) interval W_t containing t such that $F(V_t \times W_t)$ is contained in an evenly covered neighborhood of $F(y_0, t)$. Compactness implies that we can cover $y_0 \times I$ with finitely sets from $\{V_t \times W_t : t \in I\}$. Taking the relevant finite intersection of the V_t’s we obtain an open $V \subset Y$ containing y_0. Using the finitely many W_t’s, we obtain a partition of I: $0 = t_0 < t_1 < \ldots < t_{n-1} < t_n = 1$. For each $i \in \{1, \ldots, n\}$, $F(V \times [t_{i-1}, t_i])$ is contained in an evenly covered neighborhood U_i.

Assume we’ve defined \tilde{F} on $V \times [0, t_{i-1}]$. We have $F(V \times [t_{i-1}, t_i]) \subset U_i$, and a \tilde{U}_i containing $\tilde{F}(y_0, t_{i-1})$ mapping homeomorphically to U_i. We would like to define \tilde{F} on $V \times [t_{i-1}, t_i]$ to be \tilde{F} composed with the inverse homeomorphism. To make sure this agrees with what has already been defined we should replace V by $\tilde{F}^{-1}_{V \times t_{i-1}}(\tilde{U}_i)$. After finitely many steps, this defines \tilde{F} on $V \times I$ for some open set V containing y_0.

First, argue uniqueness on $y_0 \times I$. This means that by varying y_0, the construction above defines \tilde{F} uniquely.

Corollary 3.4. Suppose $\pi : \tilde{X} \to X$ is a covering space. Let $p : I \to X$ be a path and $x_0 = p(0)$. For every lift \tilde{x}_0 of x_0, there is a unique path $\tilde{p} : I \to \tilde{X}$ lifting p with $\tilde{p}(0) = \tilde{x}_0$.

Corollary 3.5. Suppose $\pi : \tilde{X} \to X$ is a covering space. Given a homotopy of paths $p_t : I \to X$, and a lift $\tilde{p}_0 : I \to \tilde{X}$ of the path p_0, there exists a unique homotopy $\tilde{p}_t : I \to \tilde{X}$ of paths lifting p_t which starts at \tilde{p}_0.

5
\textbf{Theorem 3.6.} Let \(* = (1,0) \in S^1 \). We have an isomorphism \(\mathcal{I}_{S^1} : \mathbb{Z} \rightarrow \pi_1(S^1, *) \) defined by
\[
 n \mapsto \left[t \mapsto (\cos(2\pi nt), \sin(2\pi nt)) \right].
\]

\textit{Proof.} When \(n \in \mathbb{Z} \), write \(\omega_n \) for the loop \(t \mapsto (\cos(2\pi nt), \sin(2\pi nt)) \), so \(\mathcal{I}_{S^1}(n) = [\omega_n] \).

One checks \(\mathcal{I}_{S^1} \) is a homomorphism.

We make use of the covering map \(\pi : (\mathbb{R}, 0) \rightarrow (S^1, *) \).

First, we show that \(\mathcal{I}_{S^1} \) is surjective. Suppose \(l : (I, \partial I) \rightarrow (S^1, *) \) is a loop. \(l \) lifts uniquely to a path \(p : (I, 0) \rightarrow (\mathbb{R}, 0) \). Note that \(p(1) \in \pi^{-1}(*) = \mathbb{Z} \); let \(n = p(1) \). We claim \(\mathcal{I}_{S^1}(n) = [l] \). To see this, note that \(p \) is homotopic via the straight line homotopy to the path \(t \mapsto nt \). Composing this homotopy with \(\pi \), we obtain a homotopy from \(l \) to \(\omega_n \).

We now show that \(\mathcal{I}_{S^1} \) is injective. Suppose \([\omega_n] = [\omega_m]\). Then \(\omega_n \simeq \omega_m \), and we can lift such a homotopy to a homotopy of paths in \(\mathbb{R} \) starting at \(0 \). The endpoints must be fixed throughout the homotopy, and this shows \(n = m \). \(\square \)

4 The fundamental group of a CW-complex

Since \(\{0\} \rightarrow \mathbb{R}^n \) and \(\mathbb{R}^n \rightarrow \{0\} \) are homotopy inverses we have:

\textbf{Theorem 4.1.} \(\mathbb{R}^n \) is simply-connected.

\textbf{Theorem 4.2.} For \(n \geq 2 \), \(S^n \) is simply-connected.

\textit{Proof.} Recall \(S^n = \{ x \in \mathbb{R}^{n+1} : \|x\| = 1 \} \). Let
\[
 E = \{(x_1, \ldots, x_n, x_{n+1}) \in S^n : x_{n+1} = 0 \}, \ H_U = \{(x_1, \ldots, x_n, x_{n+1}) \in S^n : x_{n+1} > 0 \},
\]
\(p_N = (0, \ldots, 0, 1) \), and \(p_S = (0, \ldots, 0, -1) \). Stereographic projection defines a homeomorphism \((S^n \setminus p_N, p_S) \rightarrow (\mathbb{R}^n, 0) \). Thus, \(\pi_1(S^n \setminus p_N, p_S) = 0 \). To prove the theorem, it is enough to show that the inclusion \(S^n \setminus p_N \rightarrow S^n \) induces a surjection \(\pi_1(S^n \setminus p_N, p_S) \rightarrow \pi_1(S^n, p_S) \).

Let \(l : I \rightarrow S^n \) be a loop and note \(l^{-1}(p_N) \subset l^{-1}(H_U) \subset I \). \(l^{-1}(H_U) \) is open, so can be written as
\[
l^{-1}(H_U) = \bigsqcup_{j \in J} (a_j, b_j).
\]
\(l^{-1}(p_N) \) is compact and so \(J' := \{ j \in J : (a_j, b_j) \cap l^{-1}(p_N) \neq \emptyset \} \) is finite. For each \(j \in J' \), consider \(l|_{[a_j, b_j]} \). Its image is contained in \(E \cup H \), and \(l(a_j), l(b_j) \in E \). \(E \) is homeomorphic to \(S^{n-1} \) which is path-connected because \(n \geq 2 \). Moreover, \(E \cup H \) is homeomorphic to \(D^n \) which is simply-connected. These two facts mean that we can homotope \(l|_{[a_j, b_j]} \) rel \(\partial[a_j, b_j] \) to a path in \(E \). Doing this for all \(j \in J' \), defines a homotopy from \(l \) to another loop whose image is in \(S^n \setminus p_N \). \(\square \)

The previous theorem is also a consequence of Van Kampen’s theorem which we’ll see shortly.

\textbf{Theorem 4.3.} Suppose \((X, *) \) is a space, that \(n \geq 2 \), and that we have a map \(\varphi : S^{n-1} \rightarrow X \). Let \(Y \) be the space obtained by attaching an \(n \)-cell to \(X \) using \(\varphi \). Then the inclusion \(X \rightarrow Y \) induces a surjection \(\pi_1(X, *) \rightarrow \pi_1(Y, *) \).
Proof. Let $\Phi : D^n \to Y$ be the characteristic map of the n-cell, let $y = \Phi(0)$, and notice that $Y \setminus y$ deformation retracts onto X.

$$
\pi_1(X, \ast) \xrightarrow{\cong} \pi_1(Y, \ast) \xrightarrow{\pi_1(Y \setminus y, \ast)}
$$

Thus, the inclusion $X \to Y \setminus y$ is a homotopy equivalence, and induces an isomorphism $\pi_1(X, \ast) \to \pi_1(Y \setminus y, \ast)$. We just have to show $\pi_1(Y \setminus y, \ast) \to \pi_1(Y, \ast)$ is surjective. This is the same argument as the previous theorem: let $l : I \to Y$ be a loop and note $l^{-1}(y) \subset l^{-1}(1^{e^n}) \subset I$.

Theorem 4.4. Suppose (X, \ast) is a space, and that $\{\varphi_\alpha : S^{n_\alpha - 1}_\alpha \to X\}$ is a collection of attaching maps with each $n_\alpha \geq 2$. Let Y be the space obtained by attaching cells to X using $\{\varphi_\alpha\}$. Then the inclusion $X \to Y$ induces a surjection $\pi_1(X, \ast) \to \pi_1(Y, \ast)$.

Proof. Same as before, but deal with all cells simultaneously.

Theorem 4.5. Suppose (X, \ast) is a CW-complex. Then the inclusions $X^1 \to X^2$ and $X^2 \to X$ induce surjections $\pi_1(X^1, \ast) \to \pi_1(X^2, \ast)$ and $\pi_1(X^2, \ast) \to \pi_1(X, \ast)$, respectively.

Proof. The previous theorem tells us that $\pi_1(X^1, \ast) \to \pi_1(X^2, \ast)$ is surjective.

Suppose $l : (I, \partial I) \to (X, \ast)$ is a loop. Since its image is compact, it lies entirely within some n-skeleton X^n. Thus, its homotopy class is in the image of $\pi_1(X^n, \ast) \to \pi_1(X, \ast)$. The previous theorem tells us that each of the maps

$$
\pi_1(X^2, \ast) \to \pi_1(X^3, \ast) \to \ldots \to \pi_1(X^n, \ast)
$$

is surjective, so $[l]$ is in the image of $\pi_1(X^2, \ast) \to \pi_1(X, \ast)$.

In order to be able to calculate fundamental groups, we need to prove the following theorems. Theorems 4.6, 4.10, 4.12 can be proved using Van Kampen’s theorem which we will mention shortly; they can also be proved using covering space theory.

Theorem 4.6. Suppose (X, \ast) is a space, that $n \geq 3$, and that we have a map $\varphi : S^{n - 1} \to X$. Let Y be the space obtained by attaching an n-cell to X using φ. Then the inclusion $X \to Y$ induces an injection $\pi_1(X, \ast) \to \pi_1(Y, \ast)$. In fact, in light of theorem 4.3, it induces an isomorphism.

Theorem 4.7. Suppose (X, \ast) is a space, and that $\{\varphi_\alpha : S^{n_\alpha - 1}_\alpha \to X\}$ is a collection of attaching maps with each $n_\alpha \geq 3$. Let Y be the space obtained by attaching cells to X using $\{\varphi_\alpha\}$. Then the inclusion $X \to Y$ induces an injection $\pi_1(X, \ast) \to \pi_1(Y, \ast)$.

In fact, in light of theorem 4.3, it induces an isomorphism.

Proof. Same as the proof just omitted before, but deal with all cells simultaneously.

Theorem 4.8. Suppose (X, \ast) is a CW-complex. Then the inclusion $X^2 \to X$ of the 2-skeleton induces an injection $\pi_1(X^2, \ast) \to \pi_1(X, \ast)$.

In fact, in light of theorem 4.3, it induces an isomorphism.
Proof. Suppose \(l : (I, \partial I) \to (X^2, \ast) \) is a loop and that its image under \(\pi_1(X^2, \ast) \to \pi_1(X, \ast) \) is 0, that is, it is nullhomotopic in \(X \). Since the image of the nullhomotopy is compact, it lies entirely within some \(n \)-skeleton \(X^n \). Thus, the image of \([l] \) under \(\pi_1(X^2, \ast) \to \pi_1(X^n, \ast) \) is 0. The previous theorem tells us that each of the maps

\[
\pi_1(X^2, \ast) \to \pi_1(X^3, \ast) \to \ldots \to \pi_1(X^n, \ast)
\]

is injective, so \([l] \) is 0 in \(\pi_1(X^2, \ast) \).

\[\square\]

Remark 4.9. The map \(I \to S^1, t \mapsto (\cos(2\pi t), \sin(2\pi t)) \) induces a homeomorphism \(I/\partial I \to S^1 \).

Thus, a loop \(l : (I, \partial I) \to (X, x_0) \) is the same as a map \(\varphi : (S^1, \ast) \to (X, x_0) \).

Theorem 4.10. Suppose \((X, x_0) \) is a based space, that \(p : I \to X \) is a path with \(p(0) = x_0 \), and that \(\varphi : (S^1, \ast) \to (X, p(1)) \). Let \(Y \) be the space obtained by attaching a 2-cell to \(X \) using \(\varphi \), and \(l \) be the loop corresponding to \(\varphi \). Then the kernel of \(\pi_1(X, x_0) \to \pi_1(Y, x_0) \) is the normal subgroup generated by \([p \cdot l \cdot p] \).

Theorem 4.11. Suppose \((X, x_0) \) is a based space, that \(\{p_\alpha : I \to X\} \) is a collection of paths with \(p_\alpha(0) = x_0 \) for all \(\alpha \), and that \(\{\varphi_\alpha : (S^1, \ast) \to (X, p_\alpha(1))\} \) is a collection of attaching maps. Let \(Y \) be the space obtained by attaching 2-cells to \(X \) using \(\{\varphi_\alpha\} \), and \(\{l_\alpha\} \) be the loops corresponding to \(\{\varphi_\alpha\} \). Then the kernel of \(\pi_1(X, x_0) \to \pi_1(Y, x_0) \) is the normal subgroup generated by \([p_\alpha \cdot l_\alpha \cdot \overline{p_\alpha}] \).

Proof. Same as the proof just omitted before, but deal with all cells simultaneously. \[\square\]

Recall theorem 3.6. We also have the following result.

Theorem 4.12. We have an isomorphism

\[
* \alpha \mathbb{Z} \xrightarrow{\ast} \pi_1\left(\bigvee_{\alpha} S^1, \ast \right).
\]

The map is determined by the fact that the following diagram commutes for all \(\alpha \):

\[
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{i_{S^1}} & \pi_1(S^1, \ast) \\
\downarrow{i_\alpha} & & \downarrow{(i_\alpha)_*} \\
* \alpha \mathbb{Z} & \xrightarrow{\ast} & \pi_1\left(\bigvee_{\alpha} S^1, \ast \right).
\end{array}
\]

Theorem 4.13. The 1-skeleton of a path-connected CW-complex is homotopy equivalent to a wedge of circles.

Proof. A tree is contractible. Quotienting out by a maximal subtree is a homotopy equivalence to a wedge of circles. \[\square\]

Corollary 4.14. Suppose \((X, \ast) \) is a path-connected CW-complex. Then \(\pi_1(X, \ast) \) has a presentation in which the relations correspond to the attaching maps of 2-cells.
5 Van Kampen’s Theorem

Definition 5.1. **Free product of groups** as in Hatcher page 41.

Suppose \((X, \ast)\) is a based space and that \(A, B\) are subsets of \(X\) containing \(\ast\). Then we have a commutative diagram induced by inclusions:

\[
\begin{array}{ccc}
\pi_1(A \cap B, \ast) & \xrightarrow{(i_{AB})_*} & \pi_1(B, \ast) \\
(i_{AB})_* & & (j_B)_* \\
\pi_1(A, \ast) & \xrightarrow{(j_A)_*} & \pi_1(X, \ast).
\end{array}
\] (5.2)

Suppose we started with just

\[
\begin{array}{ccc}
\pi_1(A \cap B, \ast) & \xrightarrow{(i_{BA})_*} & \pi_1(B, \ast) \\
(i_{AB})_* & & (j_B)_* \\
\pi_1(A, \ast)
\end{array}
\]

and wanted to create a commutative square. We could take

\[
G = \frac{\pi_1(A, \ast) \star \pi_1(B, \ast)}{\langle (i_{AB})_*(\omega)^{-1}(i_{BA})_*(\omega) : \omega \in \pi_1(A \cap B, \ast) \rangle}.
\]

In fact, this group is the “best” such group in the sense that commutativity of (5.2) guarantees the existence of a unique homomorphism \(G \to \pi_1(X, \ast)\) such that the composites \(\pi_1(A, \ast) \to G \to \pi_1(X, \ast)\) and \(\pi_1(B, \ast) \to G \to \pi_1(X, \ast)\) are \((j_A)_*\) and \((j_B)_*\), respectively:

\[
\begin{array}{ccc}
\pi_1(A \cap B, \ast) & \xrightarrow{(i_{BA})_*} & \pi_1(B, \ast) \\
(i_{AB})_* & & (j_B)_* \\
\pi_1(A, \ast) & \xrightarrow{(j_A)_*} & G & \xrightarrow{(j_B)_*} & \pi_1(X, \ast).
\end{array}
\]

Theorem 5.3 (Van Kampen). Suppose that \((X, \ast)\) is a based space and that \(A, B\) are subsets of \(X\) containing \(\ast\). Suppose, in addition, that \(A, B,\) and \(A \cap B\) are open and path-connected, and that \(A \cup B = X\). Then the map

\[
\frac{\pi_1(A, \ast) \star \pi_1(B, \ast)}{\langle (i_{AB})_*(\omega)^{-1}(i_{BA})_*(\omega) : \omega \in \pi_1(A \cap B, \ast) \rangle} \to \pi_1(X)
\]

determined by \((j_A)_*\) and \((j_B)_*\) is an isomorphism.
Proof. Surjectivity isn’t so bad. Let \(l : (I, \partial I) \to (X, \ast) \) be a loop. Using compactness of \(I \), we can find a partition

\[
0 = s_0 < s_1 < \ldots < s_n < s_{n+1} = 1
\]

such that for all \(i \in \{1, \ldots, n\} \), \(f([s_{i-1}, s_i]) \) is a subset of either \(A \) or \(B \). Since \(A \cap B \) is path-connected, we can find paths \(p_i : I \to A \cap B \), with \(p_i(0) = \ast \) and \(p_i(1) = f(s_i) \). We have

\[
[l] = \left[p_0 \cdot f|_{[s_0, s_1]} \cdot \overline{p_1} \right] \left[p_1 \cdot f|_{[s_1, s_2]} \cdot \overline{p_2} \right] \cdots \left[p_{n-1} \cdot f|_{[s_{n-1}, s_n]} \cdot \overline{p_n} \right]
\]

which is in the image of the map determined by \((j_A)_\ast\) and \((j_B)_\ast\).

Injectivity is more difficult. See Hatcher for a proof. \(\square \)

Example 5.4. \(\pi_1(S^1 \vee S^1, \ast) \cong \mathbb{Z} \ast \mathbb{Z} \).

Theorem 4.12 follows by induction for finite indexing sets. It follows for arbitrary indexing sets from the stronger version of Van Kampen’s theorem stated in Hatcher.

We turn to the proofs of theorem 4.10 and theorem 4.6.

Proof of theorem 4.10 and theorem 4.6. Suppose \((X, x_0)\) is a based space. Because the fundamental group of \((X, x_0)\) only “sees” the path-component of \(x_0 \), we may as well assume that \(X \) is path-connected.

Suppose \(p : I \to X \) is a path with \(p(0) = x_0 \), and \(\varphi : (S^1, \ast) \to (X, p(1)) \). Let \(Y \) be the space obtained by attaching a 2-cell to \(X \) using \(\varphi \), \(\Phi : D^2 \to Y \) be the characteristic map of the 2-cell, and \(y = \Phi(0) \). Let \(l \) be the loop corresponding to \(\varphi \). To see that the kernel of \(\pi_1(X, x_0) \to \pi_1(Y, x_0) \) is the normal subgroup generated by \([p \cdot l \cdot \overline{p}]\), we will apply Van Kampen’s theorem to a space which deformation retracts to \(Y \). The reason for fattening up \(Y \) is that we do not know what \(Y \) looks like near \(x_0 \), and so describing opens sets containing \(x_0 \) is not possible.

Let

\[
Z = \frac{(I \times I) \cup Y}{(s, 0) \in I \times I \sim p(s) \in Y, (1, t) \in I \times I \sim \Phi(1-\frac{t}{2}, 0) \in Y},
\]

\(z_0 \in Z \) be the image of \((0, 1) \in I \times I \), \(X' \) be the image of \((0 \times I) \cup X \), \(Y' \) be the image of \((0 \times I) \cup Y \), \(A = Z - y \), and \(B = Z \setminus X \). Let \(C \) be the image of \(I \times 1 \cup \Phi(\frac{1}{2}S^1) \) and \(c_0 \) be the image of \((1, 1)\).

The inclusions \(X \to X' \), \(Y \to Y' \), \(X' \to A \), \(z_0 \to B \), \(\Phi(\frac{1}{2}) : S^1 \to C \), \(C \to A \cap B \), and \(Y' \to Z \) are homotopy equivalences, we have an obvious path \(q_1 \) from \(z_0 \) to \(x_0 \) in \(X' \), and an obvious path \(q_2 \) from \(z_0 \) to \(c_0 \) in \(C \). Thus, we obtain the following commutative diagram.

\[
\begin{array}{ccc}
\pi_1(S^1, \ast) & \cong & \mathbb{Z} \\
\Phi(\frac{1}{2})_\ast & \cong & \pi_1(X, x_0) \\
\pi_1(C, c_0) & \cong & \pi_1(X', x_0) \\
\beta_{q_2} & \cong & \beta_{q_1} \\
\pi_1(C, z_0) & \cong & \pi_1(X', z_0) \\
\pi_1(A \cap B, z_0) & \to & \pi_1(A, z_0) \\
\pi_1(Z, z_0) & \to & \end{array}
\]

10
Since $\pi_1(B, z_0) = 0$, Van Kampen’s theorem says $\pi_1(Z, z_0)$ is the quotient of $\pi_1(A, z_0)$ by the normal subgroup generated by the image of $\pi_1(A \cap B, z_0)$. This fact together with the commutative diagram finishes the proof of 4.10. The same proof works for 4.6 but in that case $\pi_1(A \cap B, z_0) = 0$. \qed

6 Further covering space theory

Proposition 6.1. Suppose $\pi: (\bar{X}, \bar{x}) \rightarrow (X, x)$ is a covering map.

The induced map $\pi_*: \pi_1(\bar{X}, \bar{x}) \rightarrow \pi_1(X, x)$ is injective, and its image consists of the homotopy classes of loops in X based at x whose lifts to \bar{X} starting at \bar{x} are loops.

Proposition 6.2. Suppose $\pi: (\bar{X}, \bar{x}) \rightarrow (X, x)$ is a covering space and that $f: (Y, y) \rightarrow (X, x)$ is a map where Y is path-connected and locally path-connected.

Then a lift $f: (Y, y) \rightarrow (\bar{X}, \bar{x})$ exists if and only if $f_*\pi_1(\pi(1), y) \subset \pi_*(\pi_1(1))$.

Proof. If a lift \tilde{f} exists then $f_*\pi_1(1) \subset \pi_*\pi_1(1)$.

Conversely, suppose $f_*\pi_1(1) \subset \pi_*\pi_1(1)$. Given $y' \in Y$, we can find a path $p: I \rightarrow Y$ from y to y'. Lift fp starting at \bar{x} to obtain $\tilde{fp}: I \rightarrow \bar{X}$. Define $\tilde{f}(y') = \tilde{fp}(1)$.

First, we argue that \tilde{f} is well-defined. Suppose $q: I \rightarrow Y$ is a second path from y to y'. Then $p\tilde{q}$ is a loop based at y. So $fp \tilde{q}$ is loop based at x in $f_*\pi_1(1)$, thus, in $\pi_*\pi_1(1)$. Therefore $fp \tilde{q}$ lifts to a loop in \bar{X} based at \bar{x}. We conclude that $\tilde{fp}(1) = \tilde{fq}(1)$. So \tilde{f} is well-defined.

The map is continuous because locally it looks like $\pi^{-1}f$. \qed

Proposition 6.3. Suppose $\pi: (\bar{X}, \bar{x}) \rightarrow (X, x)$ is a covering space and $f: (Y, y) \rightarrow (X, x)$ is a map from a connected space Y. Any two lifts $f_1, f_2: (Y, y) \rightarrow (\bar{X}, \bar{x})$ of f are equal.

Proposition 6.4. Suppose (X, x) is path-connected and locally path-connected. Two path-connected covering spaces $p_1: (\bar{X}_1, \bar{x}_1) \rightarrow (X, x)$ and $p_2: (\bar{X}_2, \bar{x}_2) \rightarrow (X, x)$ are isomorphic if and only if

$$(p_1)_*(\pi_1(\bar{X}_1, \bar{x}_1)) = (p_2)_*(\pi_1(\bar{X}_2, \bar{x}_2)).$$

Theorem 6.5. Suppose (X, x) is path-connected, locally path-connected, and semilocally simply-connected. Then there exists a covering map $\pi_0: (\bar{X}_0, \bar{x}_0) \rightarrow (X, x)$ in which \bar{X}_0 is simply-connected.

Proof. Suppose X is path-connected, locally path-connected, and semilocally simply-connected.

Let

$$\bar{X}_0 = \{[p] : p \text{ is a path starting at } x\},$$

where $[p]$ denotes the homotopy class of p with respect to homotopies that fix the end-points. Let \bar{x}_0 the homotopy class of the constant path starting at x. Let $\pi_0([p]) := p(1)$.

It is possible to put a topology on \bar{X}_0 so that $\pi_0: (\bar{X}_0, \bar{x}_0) \rightarrow (X, x)$ is a covering map.

Given $[p] \in \bar{X}_0$. Let $p_t: I \rightarrow X$ be the path such that $p_t|_{[0, t]} = p|_{[0, t]}$ and p_t is constant on $[t, 1]$. Then $t \mapsto [p_t]$ is a path from \bar{x}_0 to $[p]$ in \bar{X}_0. Thus, \bar{X}_0 is path-connected.
Let \(l : (I, \partial I) \to (X, x) \) be a loop. \(\tilde{p} : t \mapsto [l_t] \) is a lift of \(l \) to \(\tilde{X}_0 \) starting at \(\tilde{x}_0 \). If \([l]\) is in the image of \((\pi_0)_*\), then \(\tilde{p} \) is a loop, so \([l] = [l_1] = \tilde{p}(1) = \tilde{x}_0\), which means \(l \) is nullhomotopic. Thus, the image of \(\pi_1(\tilde{X}_0, \tilde{x}_0) \) under \((\pi_0)_*\) is 0. So \(\pi_1(\tilde{X}_0, \tilde{x}_0) = 0 \), and \(\tilde{X}_0 \) is simply-connected.

Definition 6.6. Suppose \((X, x)\) is path-connected, locally path-connected, and semilocally simply-connected. The \((\tilde{X}_0, \tilde{x}_0)\) constructed in the previous theorem is called the *universal cover* of \((X, x)\).

The construction gives \((\tilde{X}_0, \tilde{x}_0)\) a left \(\pi_1(X, x) \)-action: \([l][p] = [l \cdot p]\).

Remark 6.7. From now on we’ll always assume \((X, x)\) is path-connected, locally path-connected, and semilocally simply-connected, so that it has a universal cover.

Definition 6.8. Suppose \(\pi : (\tilde{X}, \tilde{x}) \to (X, x) \) is a covering map.

Suppose \(f \in \pi^{-1}(x) \) and that \([l] \in \pi_1(X, x)\). By lifting \(l \) to a path starting at \(f \) and recording where the path ends, we obtain another point \(f' \in \pi^{-1}(x) \). Define \(f[l] := f' \).

Thus, \(\pi^{-1}(x) \) is a right \(\pi_1(X, x) \)-set with \(\tilde{x} \) as a distinguished point.

This is called the *action of \(\pi_1(X, x) \) on the fiber \(\pi^{-1}(x) \).*

This procedure defines a functor \(\text{Fib} \) from \(\text{Cov}_*(X, x) \) to \(\pi_1(X, x)\)-Set_*.

Definition 6.9. Suppose \((X, x) \) is a based space and that \(F \) is a \(\pi_1(X, x) \)-set with a distinguished point \(*\). Then we can construct a covering map \(\pi : (\tilde{X}, \tilde{x}) \to (X, x) \) as follows.

Let \(\pi_0 : (\tilde{X}_0, \tilde{x}_0) \to (X, x) \) be the universal cover of \((X, x)\). Let

\[
\tilde{X} = \frac{F \times \tilde{X}_0}{(f \cdot [l], [p]) \sim (f, [l \cdot p])}
\]

and \(\tilde{x} = [(*, \tilde{x}_0)] \). Define \(\pi : (\tilde{X}, \tilde{x}) \to (X, x) \) by \([f, [p]] \mapsto p(1)\).

This is called the *Borel construction.*

Notice that \(\pi^{-1}(x) = F \times \tilde{x}_0 / \sim \).

This procedure defines a functor \(\text{Bor} \) from \(\pi_1(X, x)\)-Set_* to \(\text{Cov}_*(X, x) \).

Theorem 6.10. \(\text{Fib} \) and \(\text{Bor} \) define an equivalence of categories \(\text{Cov}_*(X, x) \simeq \pi_1(X, x)\)-Set_*.

Proof. Suppose \(\pi : (\tilde{X}, \tilde{x}) \to (X, x) \) is a covering map.

Given \(p : I \to X \) starting at \(x \) and \(f \in \pi^{-1}(x) \), we can lift \(p \) starting at \(f \), to obtain \(\tilde{p} : I \to \tilde{X} \). Then \(\tilde{p}(1) \in \tilde{X} \). We can define

\[
\frac{\pi^{-1}(x) \times \tilde{X}_0}{(f \cdot [l], [p]) \sim (f, [l \cdot p])} \to \tilde{X}, \quad [(f, [p])] \mapsto \tilde{p}(1).
\]

This is a homeomorphism (exercise).

Conversely, suppose \((X, x)\) is a based space and that \(F \) is a \(\pi_1(X, x) \)-set and construct

\(\pi : (\tilde{X}, \tilde{x}) \to (X, x) \)

as in definition 6.9.

We have already remarked that \(F \to \pi^{-1}(x), f \mapsto [(f, \tilde{x}_0)] \) is a bijection of sets. We show that it is an isomorphism of \(\pi_1(X, x) \)-sets. Suppose \(f \in F \) and that \([l] \in \pi_1(X, x_0)\). Then \(p : I \to \tilde{X}, \quad t \mapsto [(f, [l_t])] \) is a path from \([(f, \tilde{x}_0)]\) to \([(f, [l])] = [(f[l], \tilde{x}_0)]\) lifting \(l \). This shows that \([(f, \tilde{x}_0)][l] = [(f[l], \tilde{x}_0)]\), so that the bijection is indeed a map of \(\pi_1(X, x) \)-sets.

\[\square\]
Proposition 6.11. Fib and Bor restrict to an equivalence of categories

$$\text{PathConnCov}_*(X,x) \simeq \text{Trans-}π_1(X,x)-\text{Set}_*.$$

Proof. Suppose $π: (\tilde{X}, \tilde{x}) → (X,x)$ is a covering map, that \tilde{X} is path-connected, and let f, f' be in the fiber $π^{-1}(x)$. We can choose a path p from f to f'. Then $l = π ◦ p$ is a loop in X and we have $f[l] = f'$, so the action of $π_1(X,x)$ on $π^{-1}(x)$ is transitive.

Conversely, suppose (X,x) is a based space, that F is a transitive $π_1(X,x)$-set and construct

$$\pi: (\tilde{X}, \tilde{x}) → (X,x)$$

as in definition 6.9. Given two points in \tilde{X}, because the $π_1(X,x)$-action on F is transitive, we can choose their representatives so that the F-coordinates are the same; we can then connect them by a path because \tilde{X}_0 is path-connected. Thus, \tilde{X} is path-connected.

Recall from elementary group theory that transitive G-sets with a distinguished point are determined up to isomorphism by the stabilizer of of that distinguished point.

Theorem 6.12. We have an equivalence of categories

$$\text{PathConnCov}_*(X,x) \leftarrow \{\text{subgroups of } π_1(X,x)\}$$

$$\xymatrix{(\pi: (\tilde{X}, \tilde{x}) → (X,x)) \ar[r]^\text{im } (\pi_*: π_1(\tilde{X}, \tilde{x}) → π_1(X,x)) & H \backslash \tilde{X}_0 \ar[r] & H.}$$

Proof. Suppose $π: (\tilde{X}, \tilde{x}) → (X,x)$ is a covering map. Under the action of $π_1(X,x)$ on $π^{-1}(x)$, the stabilizer of \tilde{x} consists of the loops in X starting at x which lift to loops in \tilde{X} starting at \tilde{x}. This is precisely

$$\text{im } (\pi_*: π_1(\tilde{X}, \tilde{x}) → π_1(X,x)).$$

Also, $\left(H \backslash π_1(X,x_0) \right) \times \tilde{X}_0 / \sim = H \backslash \tilde{X}_0.$

Corollary 6.13. Let $π: (\tilde{X}, \tilde{x}) → (X,x)$ be a covering space in which \tilde{X} and X are path-connected. The number of sheets of the covering equals the index of $π_*(π_1(\tilde{X}, \tilde{x}))$ in $π_1(X,x)$.

Remark 6.14. Forgetting the basepoint in a covering space of (X,x) causes us to forget about the distinguished point in the corresponding $π_1(X,x)$-set. This means that the corresponding stabilizer is only defined up to conjugacy class.

The geometric reason for this is as follows. Suppose (X,x) is a based space, $π: \tilde{X} → X$ is a covering space, and $\tilde{x}_1, \tilde{x}_2 ∈ π^{-1}(x)$. If p is a path from \tilde{x}_1 to \tilde{x}_2, then $l = πp$ is a loop based at x, and the following diagram commutes. Thus, changing the basepoint in a path-connected covering space corresponds to changing the image subgroup to a conjugate subgroup.

$$\xymatrix{π_1(\tilde{X}, \tilde{x}_1) \ar[r]_(\beta_\tilde{h})^{c[l]} & π_1(\tilde{X}, \tilde{x}_2) \ar[d]^{π_*} \ar[r]_(\beta_π)^{\sim} & π_1(X,x) \ar[d]^{π_*} \ar[r]_{c[l]}^{\sim} & π_1(X,x)}$$

13
Corollary 6.15. We have an equivalence of categories
\[\text{PathConnCov}(X, x) \longleftrightarrow \{ \text{conjugacy classes of subgroups of } \pi_1(X, x) \}. \]

Definition 6.16. Let \(\pi : \tilde{X} \to X \) be a covering map. The automorphisms of a covering \(\pi \) are called deck transformations. The group of deck transformations \(\text{Aut}(\pi) \) acts on \(\tilde{X} \) on the left. \(\pi \) is called normal if for all \(x \in X \), the action of \(\text{Aut}(\pi) \) on \(\pi^{-1}(x) \) is transitive.

Proposition 6.17. Suppose \((X, x)\) is a space, that \(\pi : \tilde{X} \to X \) is a path-connected covering space, \(\tilde{x}_1, \tilde{x}_2 \in \pi^{-1}(x) \), \(p \) is a path from \(\tilde{x}_1 \) to \(\tilde{x}_2 \), and \(l = \pi p \). Then there is a deck transformation taking \(\tilde{x}_1 \) to \(\tilde{x}_2 \) if and only if conjugating by \([l] \) is trivial on \(\pi_*(\pi_1(\tilde{X}, \tilde{x}_1)) \).

Proof. There is a deck transformation taking \(\tilde{x}_1 \) to \(\tilde{x}_2 \) if and only if \(\pi_*(\pi_1(\tilde{X}, \tilde{x}_1)) = \pi_*(\pi_1(\tilde{X}, \tilde{x}_2)) \) and the previous remark tells us that these groups are related by conjugation by \([l] \). \(\square \)

Proposition 6.18. Suppose \((X, x)\) is a space, that \(\pi : \tilde{X} \to X \) is a path-connected covering space, and \(\tilde{x} \in \pi^{-1}(x) \). Let \(H = \pi_*(\pi_1(\tilde{X}, \tilde{x})) \).

\(\pi \) is a normal covering if and only \(H \) is a normal subgroup of \(\pi_1(X, x) \).

In any case, we have an isomorphism \(N(H)/H \to \text{Aut}(\pi) \), where \(N(H) \) denotes the normalizer of \(H \).

Proof. The claim about normality follows from the previous proposition.

First note that by connectedness, a deck transformation is determined by the image of \(\tilde{x} \). Define \(\Phi : N(H) \to \text{Aut}(\pi) \) by \(\Phi([l])(\tilde{x}) = \tilde{x}[l] \), that is, given \([l] \in N(H)\), lift \(l \) to a path \(p \) which starts at \(\tilde{x} \), and let \(\Phi([l]) \) be the deck transformation which takes \(\tilde{x} \) to \(p(1) \). The first sentence of this paragraph together with the previous proposition ensure that \(\Phi \) is well-defined and surjective.

We check \(\Phi \) is a homomorphism. Suppose \([l_1], [l_2] \in \pi_1(X, x)\) and that \(p_1 : (I, 0) \to (X, x) \) and \(p_2 : (I, 0) \to (X, \tilde{x}) \) lift \(l_1 \) and \(l_2 \), respectively. We have \(\Phi(l_1)(\tilde{x}) = \pi_1(1) \) and \(\Phi(l_2)(\tilde{x}) = \pi_2(1) \). So \(\Phi(l_1)[p_2] : (I, 0) \to (\tilde{X}, \pi_1(1)) \) lifts \(l_2 \), and \(p_1 \cdot (\Phi(l_1)p_2) \) lifts \(l_1 \cdot l_2 \). Thus,

\[\Phi(l_1 \cdot l_2)(\tilde{x}) = (p_1 \cdot (\Phi(l_1)p_2))(1) = (\Phi(l_1)p_2)(1) = \Phi(l_1)(p_2(1)) = \Phi(l_1)(\Phi(l_2)(\tilde{x})) = \Phi(l_1)[\Phi(l_2)(\tilde{x})] \]

which implies \(\Phi(l_1 \cdot l_2) = \Phi(l_1)\Phi(l_2) \). Finally, \(\ker \Phi = \text{stab}(\tilde{x}) = H \). \(\square \)

A covering space proof of theorem 6.10. Suppose \((X, x_0)\) is a based connected CW-complex.

Suppose \(p : I \to X \) is a path with \(p(0) = x_0 \), and \(\varphi : (S^1, \ast) \to (X, p(1)) \). Let \(Y \) be the space obtained by attaching a 2-cell to \(X \) using \(\varphi \), let \(l \) be the loop corresponding to \(\varphi \), and let \(N \) be the normal subgroup generated by \([p \cdot l \cdot \overline{p}] \).

Let \(\pi : \tilde{X} \to X \) be the covering space corresponding to \(N \). Because \(N \) is normal, \(\varphi : (S^1, \ast) \to (X, p(1)) \) has lifts to \(\tilde{X} \) indexed by \(G/N \). Attach a 2-cell for each element of \(G/N \) to get a covering \(\tilde{Y} \to Y \).

It is clear that \(N \) is in the kernel of \(\pi_1(X, x_0) \to \pi_1(Y, x_0) \). Conversely, suppose \([l] \in \pi_1(X, x_0) \to \pi_1(Y, x_0) \). This means we have a nullhomotopy of \(l \) in \(Y \). This means that \(l \) lifts to a loop in \(\tilde{Y} \), and hence in \(\tilde{X} \). This means \([l] \) is in the image of the map induced by \(\pi \), i.e. it is in \(N \). \(\square \)
Example 6.19. Consider \(X = S^1 \lor S^1 \). Then \(\pi_1(X, \ast) \) is a free group on two generators \(\sigma \) and \(\tau \).

We have \(\pi_1(X, \ast) \)-sets:

\[E = \{ \ast \}. \]
\[\Sigma = \{ l_{\Sigma}, r_{\Sigma} \}, \sigma \text{ acts trivially, and } \tau \text{ acts non-trivially.} \]
\[T = \{ c_T, l_T, r_T \}, \sigma : c_T \mapsto l_T \mapsto r_T \mapsto c_T, \tau \text{ swaps } l_T \text{ and } r_T \text{ and fixes } c_T. \]
\[G = \{ 1, 1', 2, 2', 3, 3' \}, \tau \text{ swaps prime and unprimed, } \sigma = (123)(1'2'3')^{-1}. \]

Taking stabilizers:

\[\text{Stab}(\ast) \supset \langle \sigma, \tau \rangle. \]
\[\text{Stab}(l_{\Sigma}), \text{Stab}(r_{\Sigma}) \supset \langle \tau^2, \sigma, \tau^{-1}\sigma\tau \rangle. \]
\[\text{Stab}(c_T) \supset \langle \sigma^3, \tau, \sigma\tau\sigma, \sigma\tau^{-1}\sigma \rangle. \]
\[\text{Stab}(l_T) \supset \langle \sigma^3, \sigma^{-1}\tau\sigma, \tau\sigma^2, \tau^{-1}\sigma^2 \rangle. \]
\[\text{Stab}(r_T) \supset \langle \sigma^3, \sigma\tau\sigma^{-1}, \sigma^2\tau, \sigma^2\tau^{-1} \rangle. \]
\[\text{Stab}(1), \text{Stab}(1'), \ldots, \text{Stab}(3), \text{Stab}(3') \supset \langle \sigma^3, \tau^2, \sigma^{-1}\tau^2\sigma, \sigma\tau^2\sigma^{-1}, \sigma\tau\sigma, \tau\sigma\sigma, \sigma\tau\sigma^{-1}\tau\sigma \rangle. \]

By constructing covers you find that we have equality and that the groups are generated freely.

Attaching 2-cells to \(X \) according to the words \(\sigma^3 \), \(\tau^2 \), \(\sigma\tau\sigma \), we obtain a CW-complex \(Y \) with \(\pi_1(Y, \ast) = \langle \sigma, \tau | \sigma^3, \tau^2, \sigma\tau\sigma \rangle \cong \Sigma_3 \). The sets above are also \(\Sigma_3 \)-sets; we obtain the complete Galois correspondence for \(Y \) and \(\Sigma_3 \).
7 Hawaiian Earring

Let \(S^1_n = \{ x \in \mathbb{R}^2 : \| x - \frac{1}{n} \| = \frac{1}{n} \} \) and \(\mathbb{H} = \bigcup_{n=1}^{\infty} S^1_n \). We will calculate \(\pi_1(\mathbb{H}, 0) \).

Notice that for \(N \in \mathbb{N} \), \(\bigcup_{n=1}^{N} S_n^{1} \cong \bigvee_{n=1}^{N} S^1 \). We will use this identification throughout.

We have retractions \(r_N : \mathbb{H} \to \bigvee_{n=1}^{N} S^1 \). Moreover, these retractions are compatible with the collapse maps \(c_N : \bigvee_{n=1}^{N+1} S^1 \to \bigvee_{n=1}^{N} S^1 \), that is the following square commutes for all \(N \in \mathbb{N} \):

\[
\begin{array}{c}
\mathbb{H} \\
\downarrow_{r_{N+1}}
\end{array}
\xymatrix{
\bigvee_{n=1}^{N+1} S^1
\ar[r]^{c_N}
\ar[d]_{r_N}
\bigvee_{n=1}^{N} S^1.
}\]

Thus, these retractions give compatible surjections \((r_N)_* : \pi_1(\mathbb{H}, 0) \to \pi_1(\bigvee_{n=1}^{N} S^1, *) \).

We obtain a map \(\{ (r_N)_* \} : \pi_1(\mathbb{H}, 0) \to \lim_{N} \pi_1(\bigvee_{n=1}^{N} S^1, *) \).

In case you’re not familiar with (inverse) limits:

\[
\lim_{N} \pi_1 \left(\bigvee_{n=1}^{N} S^1, * \right) = \left\{ \{ g_N \}_{N=1}^{\infty} \in \mathbb{N}, g_N \in \pi_1 \left(\bigvee_{n=1}^{N} S^1, * \right), (c_N)_*(g_{N+1}) = g_{N} \right\}.
\]

Let \(a_1, a_2, a_3, \ldots \) be chosen so that for each \(N \in \mathbb{N} \), \(\pi_1(\bigvee_{n=1}^{N} S^1, *) \) is a free group on \(a_1, \ldots, a_N \). Given \(\{ g_N \}_{N=1}^{\infty} \in \lim_{N} \pi_1(\bigvee_{n=1}^{N} S^1, *) \), we can make sure that each \(g_N \) is a reduced word. We can then write \(d_n(g_N) \) for the number of times that \(a_{\pm 1} \) appears in \(g_N \). Let

\[
H = \left\{ \{ g_N \}_{N=1}^{\infty} \in \lim_{N} \pi_1 \left(\bigvee_{n=1}^{N} S^1, * \right) : \forall n \in \mathbb{N}, \lim_{N \to \infty} d_n(g_N) \text{ is finite} \right\}.
\]

We claim that \(\{ (r_N)_* \} \) is an injection with image \(H \).

- \(\text{im}\{ (r_N)_* \} \subseteq H \).
 - Suppose \(l : (I, \partial I) \to (\mathbb{H}, 0) \) is a loop in \(\mathbb{H} \).
 - \(l \) is uniformly continuous, so for each \(n \in \mathbb{N} \), we can find a \(\delta_n > 0 \) such that
 \[
 \forall s \in I, \forall t \in I, |s - t| < \delta_n \implies \| l(s) - l(t) \| < \frac{1}{n}.
 \]
 - Thus, \(\lim_{N \to \infty} d_n((r_N)_*[l]) \leq \frac{1}{\delta_n} \), and \(\{ (r_N)_*[l] \} = \{ (r_N)_*[l] \} \in H \).
 - As an example, let \(h_n = a_1 a_n \) and \(g_N = h_1 h_2 h_3 \cdots h_{N-1} h_N a_1^{-N} \). Then it should be clear that \(\{ g_N \} \) is not in the image of \(\{ (r_N)_* \} \).

- \(H \subseteq \text{im}\{ (r_N)_* \} \).
 - Suppose \(\{ g_N \} \in H \). Choose an increasing sequence of natural numbers \(\{ N_k \}_{k=1}^{\infty} \) such that
 \[
 d_k(g_{N_k}) = \lim_{N \to \infty} d_k(g_N).
 \]
 - Chop the interval \(I \) into \(2N_1 + 1 \) pieces. Chop the 1-st, 3-rd, 5-th, \ldots, \((2N_1 + 1) \)-st pieces into \(2N_2 + 1 \) pieces. Chop the 1-st, 3-rd, \ldots, \((2N_2 + 1) \)-st of each of these pieces into \(2N_3 + 1 \) pieces. Keep going.
We now define a loop \(l : (I, \partial I) \to (\mathbb{H}, 0) \) as follows. Use \(g_{N_1} \) to define what happens on the 2-nd, 4-th, \ldots, \(2N_1 \)-th piece of the interval in the first level of chopping: either do \(a_1 \) or \(a_1^{-1} \). Use the elements \(g_{N_2} \) to define things on the even pieces of next level of chopping. I chopped more than necessary and there will be some constant paths. Keep going to get a loop \(l \) with \(\{(r_N)_*\}[l] = \{g_N\} \).

The idea above was simply to put in the correct amount of looping around the \(k \)-th circle \(S^1_k \), while leaving space to do the loops around smaller circles. Checking continuity of the loop using \(\epsilon, \delta \) would make explicit use of the sequence \((N_k)_{k=1}^\infty \).

- \(\ker \{(r_N)_*\} = 1 \).

Suppose \(l : (I, \partial I) \to (\mathbb{H}, 0) \) is a loop in \(\mathbb{H} \) and that \(\{(r_N)_*\}[l] = 1 \).

We should hope for a homotopy \(l_t : (I, \partial I) \to (\mathbb{H}, 0) \) such that \(l_0 = l, l_1 = c_0 \), and

\[
\forall N \in \mathbb{N}, \forall t \in \left[\frac{1}{N + 1}, \frac{1}{N} \right], \quad l_t(I) \subseteq \bigcup_{n=1}^N S^1_n.
\]

The idea is that \(l \) determines some potentially infinite word, or a function

\[
f : T \to \{a_1^{\pm 1}, a_2^{\pm 1}, a_3^{\pm 1}, \ldots\}
\]

from some totally ordered set \(T \). We obtain this by recording which circles \(l \) travels around. By the \(\text{im}\{(r_N)_*\} \subseteq H \) argument, each letter \(a_n \) shows up finitely many times. The condition \(\{(r_N)_*\}[l] = 1 \) says that when we only remember the letters \(a_1, \ldots, a_N \) this word reduces to the empty word. So there’s cancellation. In particular, the \(a_N \)'s cancel to give a word in just \(a_1, \ldots, a_{N-1} \). We should use this cancellation to determine the homotopy on \(\left[\frac{1}{N+1}, \frac{1}{N} \right] \).