AS YMPTOTIC ESTIMATION FOR MINIMAL PLASMA RADIUS IN A
SPHERICALLY SYMMETRIC MAGNETIZED TARGET FUSION REACTOR
MODEL

MICHAEL LINDSTROM *

Abstract. Nonlinear conservation laws with moving boundaries often arise in applications such as gas and plasma dynamics and more recently in the context of nuclear fusion reactors. Gaining insight into the nature of solutions to such models and their dependence upon design parameters is often done numerically. Instead of relying upon numerics, in this paper we use formal asymptotics to study a model of a magnetized target fusion reactor for producing energy. We will asymptotically solve the compressible euler equations with two free moving boundaries, with an algebraic coupling of fluid pressure at one of the free boundaries. The model consists of an intense pressure being imparted on the boundary of a large sphere holding molten lead-lithium over a very short time scale, in the middle of which is a smaller concentric sphere containing plasma. A localized disturbance quickly propagates towards the plasma, whereby part of the energy is reflected and part compresses the plasma. The plasma pressure is modelled by a magnetic pressure, dependent upon its radius. Both the outer boundary of the lead-lithium sphere and the plasma boundary are free. Using matched asymptotics and various techniques for solving linear hyperbolic systems including Riemann Invariants and using the velocity potential formulation of the linear acoustic equations, we estimate the maximum compression of the plasma. This maximum compression is obtained in two ways: with an energy argument originally attributed to Lord Rayleigh in studying bubble dynamics and a new asymptotic argument for the maximum compression of a bubble subjected to the Rayleigh-Plesset equation. This estimation gives insights into the factors relevant in designing an energy-producing reactor.

Keywords: Compressible Euler equations, hyperbolic conservation laws, free boundaries, formal asymptotics, magnetized target fusion

1. Introduction. Developing technology suitable for harvesting fusion energy and using it for power is an exciting and active area of research. Thanks to advances in technology, various projects worldwide have gotten closer to achieving this aim [4]. Recently, a paper was written illustrating a numerical framework that could be used in simulations of magnetized target fusion; in the paper, a simplified model of one particular reactor design was investigated [12]. In this paper, we investigate the model further from an analytic perspective.

Mathematical models of fluids often deal with nonlinear conservation laws such as the Euler or Navier Stokes equations. These equations are often difficult to solve or approximate analytically. In this paper, we will be dealing with the hyperbolic conservation laws for mass and momentum conservation given by the compressible Euler equations (see [5] for relevant background to these equations). There is an additional obstacle we deal with, which are the free boundaries that arise naturally in our application. Free boundary, or moving boundary problems, entail a physical boundary (possibly the domain of a PDE or an interface) evolving with time due to the conditions at the boundary itself. Instead of the boundary position being prescribed in the problem or being a known function of time, it must be solved for within the problem as its evolution depends upon the nature of the solution at any given time, where the solution evolves as a PDE in both space and time. A common example is that of a Stefan problem describing the position of the boundary of an ice cube as it melts: the velocity of the boundary depends on the jump in heat flux at the interface which changes with time [14]. Another example, which we will deal with, relates to bubble dynamics and the motion of the boundary of a gas bubble in a fluid (see [2] for a thorough introduction to bubble dynamics). This work is novel in that asymptotic analysis allows us to overcome both the obstacle of the nonlinear conservation laws and the difficulty of the free boundaries to yield

*Mathematics Department, University of British Columbia, mlrtlm@math.ubc.ca

insightful results for the application. In our context, the fluid will be lead-lithium between the free boundaries of an inner spherical plasma ball and an outer spherical shell impacted by pistons.

The paper is organized into the following sections: this introduction, where we overview the physical motivation and context for the problem; section 2, where we outline the equations and nondimensionalize them; section 3, where we use formal asymptotic analysis to study the system; section 4, where we validate the asymptotics by comparing with numerical results; and finally section 5 where we conclude and consider future work.

1.1. A Design for a Magnetized Target Fusion Reactor. Nuclear fusion is a complicated process whereby lighter elements fuse together to produce heavier elements. Fusion technology researchers often consider the use of deuterium or tritium fuels, producing helium and free neutrons upon fusion [1]. The released energy can be collected and used. Many factors impact fusion, but three very big factors in determining if a deuterium or tritium fuel can fuse to yield more energy output than input are pressure (or particle density), temperature, and confinement time [11]. In general, the greater the density and temperature that can be achieved and for the longer the time, the more effective the device. The design we consider is based on a Canadian fusion research company, General Fusion [8] [9]. The apparatus being engineered consists of a large sphere of molten lead with a vertical axis that is empty through which a toroidal plasma will be fired. Pistons will impart a large pressure to the outer sphere over a fast time scale. This will generate a disturbance in the fluid which will propagate and focus radially inward, reaching the centre. The plasma will be fired into the central axis at a precise time so as to be at the centre when the pressure wave reaches it.

Our objective in this paper is to predict the minimal radius of the plasma, as this is a key parameter in how efficient such a design could potentially be. Other factors such as confinement time are not analyzed.

1.2. Physical Assumptions. Plasma pressures have both a gas pressure and magnetic pressure component. The gas pressure is due to the particle density and the magnetic pressure arises due to magnetic fields. In many plasmas, the magnetic pressure is often much larger initially. Although the plasma in the device is toroidal [8], we take the plasma to be spherical where its major radius is the radius of the sphere in the model and we assume spherical symmetry for all components. The plasma pressure is modelled by the magnetic pressure (scaling inversely with the fourth power of its radius) [17], where we neglect the gas pressure completely.

The pressure imparted by the pistons is described by a baseline pressure plus a very large pressure modulated by a Gaussian with a very short time-scale. The pressure of lead-lithium is taken to be linear in density. Our model will neglect mixing effects and radiation losses. These simplifications allow us to write more tractable equations and gain qualitative insight into how the most basic engineering parameters influence the compression of the plasma.

2. Equations and Nondimensionalization. Here we present the equations relevant to this study and nondimensionalize the system so that formal asymptotics can be applied. The values and explanations of the constants used are provided in tables 1 and 2.

2.1. Euler Equations. Within the lead-lithium, we work with the Euler equations for mass and momentum conservation. Denoting the mass density by \(\rho \), the local fluid velocity by \(\mathbf{V} \) and the pressure by \(P \) in a space-time coordinate system \((X, T)\), we have:

\[
\rho T + \nabla_x \cdot (\rho \mathbf{V}) = 0 \quad \text{and} \quad (\rho \mathbf{V}) T + \nabla_x P + \nabla_x \cdot (\rho \mathbf{V} \otimes \mathbf{V}) = 0
\]
which with spherical symmetry, so that the vector quantities only have components in the radial direction and $\mathbf{V} = V$, reduce to

$$
\varrho T + (\varrho V)_R + \frac{2}{R}(\varrho V) = 0 \quad \text{and} \quad (\varrho V)_T + P_R + (\varrho V^2)_R + \frac{2}{R}(\varrho V^2) = 0.
$$

The space-time coordinates are now (R, T).

We will model the equation of state of lead-lithium by linearizing its pressure P about its density at atmospheric pressure ϱ_0. From experimental data\cite{15}, the sound speed C_s of lead at atmospheric pressure is 2090 m/s. The square of the sound speed is the derivative of P with respect to density ϱ so this allows us to express $P(\varrho)$ as an approximate linear function. We specify $P(\varrho) = C_s^2(\varrho - \varrho_0) + P_{\text{atm}}$ (2.2). Note that we are approximating the equation of state for lead-lithium by the linearized equation of state for solid lead-lithium.

Table 1: Characteristic constants for this application.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_s</td>
<td>Sound speed of lead at 1 atm</td>
<td>2090 m/s</td>
</tr>
<tr>
<td>ϱ_0</td>
<td>Density of lead at 1 atm</td>
<td>11340 kg/m³</td>
</tr>
<tr>
<td>P_{atm}</td>
<td>Atmospheric pressure</td>
<td>101325 Pa</td>
</tr>
<tr>
<td>$P_{\text{plasma,0}}$</td>
<td>Initial plasma pressure</td>
<td>5 MPa</td>
</tr>
<tr>
<td>P_{max}</td>
<td>Maximum piston pressure</td>
<td>2 GPa</td>
</tr>
<tr>
<td>Γ</td>
<td>Coefficient for magnetic pressure growth</td>
<td>8000 N m²</td>
</tr>
<tr>
<td>T_0</td>
<td>Gaussian decay time scale</td>
<td>45 µs</td>
</tr>
<tr>
<td>$R_{\text{inner,0}}$</td>
<td>Initial plasma radius</td>
<td>0.2 m</td>
</tr>
<tr>
<td>$R_{\text{outer,0}}$</td>
<td>Initial lead sphere radius</td>
<td>1.5 m</td>
</tr>
</tbody>
</table>

2.2. Boundary Conditions. Due to the impact of the pistons and the interaction of the wave with the plasma boundary, this is a moving boundary problem. We denote R_L to be the radius of the inner wall of the lead-lithium sphere (the plasma radius), and R_R to be the radius of the outer wall of the lead-lithium sphere. The local fluid velocity at the inner and outer boundaries matches the velocities of these walls respectively:

$$
V_R(T) \equiv \frac{dR_L}{dT} = V(R_L(T), T) \quad \text{and} \quad V_R(T) \equiv \frac{dR_R}{dT} = V(R_R(T), T).
$$

At any given time, the lead-lithium exists between R_L and R_R.

At the inner wall, the pressure is given by the plasma magnetic pressure. This gives

$$
P_L(T) = P(R_L(T), T) = \frac{\Gamma}{R_L(T)^4} = \frac{P_{\text{plasma,0}}}{(R_L(T)/R_{\text{atm}}(-\infty))^4}.
$$

This is an algebraic coupling of the fluid pressure and plasma pressure at this wall. At the outer wall, the pressure is given by the piston pressure which is modelled by a Gaussian pressure in addition to a baseline minimum applied pressure

$$
P_R(T) = (P_{\text{max}} - P_{\text{plasma,0}})e^{-T^2/T_0^2} + P_{\text{plasma,0}}.
$$
Table 2: Characteristic dimensions for the system. The first three entries are chosen by the theoretical operating conditions. The last two entries can be derived from the first three.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Notation/Equation</th>
<th>Characteristic Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density ϱ</td>
<td>$\varrho = \varrho_0$</td>
<td>$11,340 \text{ kg m}^{-3}$</td>
</tr>
<tr>
<td>Pressure P</td>
<td>$P = P_{\text{max}}$</td>
<td>2 GPa</td>
</tr>
<tr>
<td>Distance R</td>
<td>$R = R_{\text{outer,0}}$</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Time T</td>
<td>$T = R/\varrho P^2$</td>
<td>3.57 ms</td>
</tr>
<tr>
<td>Velocity V</td>
<td>$V = \sqrt{P/\varrho}$</td>
<td>420. m s$^{-1}$</td>
</tr>
</tbody>
</table>

2.3. Initial Conditions. The maximum piston pressure occurs at $T = 0$, but we allow for negative times relative to this. The system begins at $T = -\infty$ where

\begin{equation}
V(R, -\infty) = 0, \quad P(R, -\infty) = \frac{T}{R_{L}(-\infty)}, \quad \rho(R, -\infty) = \frac{P(R, -\infty) - P_{\text{plasma,0}}}{C_s^2} + \varrho_0
\end{equation}

with

\begin{equation}
R_{L}(-\infty) = R_{\text{inner,0}} \quad \text{and} \quad R_{R}(-\infty) = R_{\text{outer,0}}.
\end{equation}

2.4. Nondimensionalization. To nondimensionalize, we will look at (2.1) with the change of variables $\tilde{\rho} = \varrho_0, V = V_0, P = P_0, \tilde{R} = R_0, \tilde{T} = T_0$ where the bars denote characteristic dimensional quantities and ρ, v, p, r, ϱ of variables are dimensionless. We wind up with:

\begin{equation}
\frac{\tilde{\varrho}}{\tilde{T}^2} \rho_t + \frac{\tilde{\varrho} \tilde{V}}{\tilde{R}} (\rho \tilde{v})_r + \frac{\tilde{\varrho} \tilde{V}^2}{\tilde{R}^2} (\rho \tilde{v})^2 = 0 \quad \text{and} \quad \frac{\tilde{\varrho} \tilde{V}}{\tilde{T}} (\rho \tilde{v})_t + \frac{\tilde{P}}{\tilde{R}^2} \tilde{v}_r + \frac{\tilde{\varrho} \tilde{V}^2}{\tilde{R}^2} (\rho \tilde{v})^2 = 0.
\end{equation}

By matching dimensional terms in (2.8)$_1$, we have $\tilde{\varrho}/\tilde{T} = \varrho_0 \tilde{V}/\tilde{R}$ so that $\tilde{V} = \tilde{R}/\tilde{T}$ (2.9). By matching dimensional terms in (2.8)$_2$, we have $(\varrho \tilde{V})/\tilde{T} = \tilde{P}/\tilde{R}$ giving $\varrho = (\tilde{P}T)/(\tilde{R}V)$ (2.10) and $(\varrho \tilde{V})/\tilde{T} = (\tilde{V}^2)/\tilde{R}$ giving the same as in (2.9).

Equations (2.9) and (2.10) give good guidance as to reasonable scalings for the system, and we also have some freedom. We will choose $\tilde{R} = 1.5$ m, the initial outer radius; $\tilde{\varrho} = 11340$ kg/m3, the density of lead at atmospheric pressure; $\tilde{P} = 2$ GPa, the maximum pressure imparted on the outer wall. Substituting (2.9) into 2.10, we have $\varrho = (\tilde{P}T^2)/(\tilde{R}^2)$ so that $\tilde{T} = \sqrt{\tilde{R}^2 \tilde{\varrho} \tilde{P}^2} = 3.57$ ms. Using this now known value of \tilde{T} in (2.9) gives $\tilde{V} = 420. \text{ m/s}$. A table summarizing this is given in table 2.

2.5. Selecting An Asymptotic Parameter. Through the nondimensionalization, various dimensionless parameters appear. Upon considering the physics of the problem, an intense pressure imparted over a very short time-scale (45 μs \ll 3.57 ms), we will define $\epsilon = T_0/\tilde{T} = 0.0126$ such that the Gaussian component of the pressure becomes $e^{-\varrho T_0 T_b^2} = e^{-t^2/\epsilon^2}$. With respect to this value of ϵ, the different dimensionless parameters have characteristic orders. For example, in dimensionless form, $p = c^2 (\rho - 1) + d$ where $c^2 = C_s^2 \tilde{\varrho} / \tilde{P} \approx 24.7$ and $d = P_{\text{atm}} / \tilde{P} \approx 5.07 \times 10^{-5}$. The density of lead-lithium corresponding to the maximum pressure is 1.04, which is well described by $\rho = 1 + O(\epsilon)$. If $\rho = 1 + O(\epsilon)$ corresponds to $\rho = O(1)$ then $c^2 = O(\epsilon^{-1})$. Thus, it is reasonable to write $p(\rho) = \frac{b^2}{a} (\rho - 1) + a c^{5/2}$ where $b = 0.557$ and $a = 2.84$. In fact, since we are aiming for a leading-order behaviour of the system, we will neglect $a c^{5/2}$ entirely since it is so small. Also due to its
negligible size, $O(\epsilon^{3/2})$, we neglect the dimensionless $P_{\text{plasma},0}$ term in the pressure condition at the right wall. Discarding these terms can be justified a posteriori by noting that in all the analysis to come, only pressures that are $O(\epsilon)$ balance in the relevant equations.

Proceeding in a similar way with the remaining equations and boundary conditions, and making use of the fact that knowing either p or ρ is equivalent, the final set of equations and conditions we consider are presented below, valid for $r_L < r < r_R$, $-\infty < t < \infty$. A diagram of our geometry is given in figure 1.

\begin{align*}
(2.11) \quad &\rho_t + (\rho v)_r + \frac{2}{r}(\rho v) = 0, \quad (\rho v)_t + \frac{b^2}{\epsilon}\rho_r + (\rho v^2)_r + \frac{2}{r}(\rho v^2) = 0 \\
(2.12) \quad &p = \frac{b^2}{\epsilon}(\rho - 1) \\
(2.13) \quad &v_L(t) = \frac{dr_L}{dt} = v(r_L(t), t), \quad v_R(t) = \frac{dr_R}{dt} = v(r_R(t), t) \\
(2.14) \quad &p_L(t) = p(r_L(t), t) = \frac{\gamma \epsilon^{7/2}}{r_L(t)^4}, \quad p_R(t) = p(r_R(t), t) = e^{-t^2/\epsilon^2} \\
(2.15) \quad &v(r, -\infty) = 0, \quad p(r, -\infty) = \frac{\gamma \epsilon^{7/2}}{r_L(-\infty)^4} \quad \rho(r, -\infty) = 1 \\
(2.16) \quad &r_L(-\infty) = \chi \epsilon^{1/2}, \quad r_R(-\infty) = 1
\end{align*}

We summarize the constants in the table 3. Our main objective is to estimate the smallest value of r_L which we denote r^*.

3. Formal Asymptotic Analysis. Before presenting the asymptotic analysis, we will outline the basic scalings, physical mechanisms, and mathematical strategies. Much of the analysis is done on the equations of linear acoustics as the asymptotics allow for linear equations. The analysis has
three distinct problems. First (region I), over a very fast time scale $O(\epsilon)$, a narrow pressure/velocity pulse is formed of width $O(\sqrt{\epsilon})$ which moves radially inward without focusing. Riemann invariants are used to solve the system. Secondly (region II), the pulse moves radially inward over a time of $O(\sqrt{\epsilon})$ covering an $O(1)$ distance, growing in amplitude by a factor of $1/\sqrt{\epsilon}$ due to focusing where we use the velocity potential and a transformation that turns the linear acoustic equations for a sphere into one-dimensional wave equations. Finally, in region III, the pulses interact with the plasma over a time scale $O(\epsilon)$ and spatial scale $O(\sqrt{\epsilon})$ with much of the energy reflecting but a small portion of useful kinetic energy remaining which we find indirectly by various integrals of the boundary conditions. By an energy argument and also by matched asymptotics involving the Rayleigh-Plesset equation, we compute the plasma radius at which the velocity of the plasma boundary switches from negative (i.e. compressing) to zero at leading order, which we define as the minimum plasma radius. The actual space and time scales over which this velocity turnaround point occur are $O(\epsilon)$ and $O(\epsilon^{3/4})$ respectively.

3.1. Region I.

3.1.1. Pulse Formation Setup. To analyze the formation of the pulse, we rescale time so that $t = \epsilon \tau$, and make the ansatzes that $\rho \sim 1 + \epsilon \rho_1 + \epsilon^\ell \rho_2$ and $v \sim \epsilon^{m_0} v_0 + \epsilon^{m_1} v_1$. Seeing as the peak impulse pressure of $p = O(1)$ corresponds to $\rho = 1 + O(\epsilon)$ these expansions are justified. In order to capture the pulse formation, we also define $y = \frac{r}{\epsilon^{1/2}}$. This leads to $\rho v^2 \sim \epsilon^{m_0} v_0 \epsilon^{m_1} v_1 + \epsilon^{m_0 + 1} \rho_1 v_0$ and $\rho v^2 \sim \epsilon^{m_0} v_0^2$, $r = 1 + \epsilon^{1/2} y$, $2/r \sim 2 - 2 \epsilon^{1/2} y$, $\partial_\tau = \epsilon^{-n} \partial_y$ and $\partial_r = \epsilon^{-1} \partial_r$. Using this in (2.11), we have to various leading orders:

$$
\epsilon^{-1}(\epsilon \rho_1 + \epsilon^\ell \rho_2)_\tau + \epsilon^{-n}(\epsilon^{m_0} v_0 + \epsilon^{m_1} v_1 + \epsilon^{m_0 + 1} \rho_1 v_0)_y + 2(\epsilon^{m_0} v_0 + \epsilon^{m_1} v_1 + \epsilon^{m_0 + 1} \rho_1 v_0) = 0
$$

$$
\epsilon^{-1}(\epsilon^{m_0} v_0 + \epsilon^{m_1} v_1 + \epsilon^{m_0 + 1} \rho_1 v_0)_\tau + \epsilon^{-n-1}b^2(\epsilon \rho_1 + \epsilon^\ell \rho_2)_y + \epsilon^{-1/2}(\epsilon^{2m_0} v_0^2)_y + 2(\epsilon^{2m_0} v_0^2) = 0.
$$

Choosing a rich balance to leading order, we choose $m_0 - n = 0$ and $m_0 - 1 = -n$ so that $m_0 = n = 1/2$. This gives

$$
\rho_{1,\tau} + v_{0,y} + \epsilon^{-1} \rho_{2,\tau} + \epsilon^{m_1-1/2} v_{1,y} + 2\epsilon^{1/2} v_0 = 0
$$

$$
\epsilon^{-1/2}(v_{0,\tau} + b^2 \rho_{1,y}) + \epsilon^{m_1-1} v_{1,\tau} + \epsilon^{-3/2} \rho_{2,y} + \epsilon^{1/2} (v_0^2)_y = 0.
$$

We choose another rich balance of terms with $\ell - 1 = m_1 - 1/2 = 1/2$ so that $\ell = 3/2$, and $m = 1$. We thus arrive at

$$
\rho \sim 1 + \epsilon \rho_1 + \epsilon^3/2 \rho_2, \quad v \sim \epsilon^{1/2} v_0 + \epsilon v_1
$$

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
<th>Formula</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>pulse time scale</td>
<td>$\frac{H_p}{T}$</td>
<td>0.0126</td>
</tr>
<tr>
<td>b</td>
<td>scaled sound speed</td>
<td>$\frac{C_s}{\sqrt{\epsilon}}$</td>
<td>0.557</td>
</tr>
<tr>
<td>γ</td>
<td>scaled magnetic pressure coefficient</td>
<td>$\frac{P_{\text{plasma,0}}R_{\text{inner,0}}^4}{\rho R_{\text{inner,0}}^2}$</td>
<td>3.52</td>
</tr>
<tr>
<td>χ</td>
<td>scaled initial inner radius</td>
<td>$\frac{R_{\text{inner,0}}}{R_{\text{0}}} \epsilon$</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Table 3: Dimensionless parameters of the system.
with \(t = \epsilon \tau \) and \(y = \frac{r-1}{\epsilon^2 \tau^2} \).

To deal with boundary conditions, we first need to find an asymptotic expression for \(r_R \sim 1 + \epsilon^k r_R(\tau) \). To leading order \(v_R = \frac{dr_R}{d\tau} = O(\epsilon^{1/2}) \). Thus, \(r'_R(t) = \epsilon^k r'_R(t) = O(\epsilon^{1/2}) \). Using \(\frac{d}{dt} = \epsilon^{-1} \frac{d}{d\tau} \), we have \(\epsilon^k - 1 \) \(r'_R(\tau) = O(\epsilon^{1/2}) \) so that \(k = 3/2 \).

It is worth mentioning that when we write \(r_R(\tau) \) we really mean \(r_R(t = \epsilon \tau) \) and not \(r_R(t = \tau) \).

Throughout this paper we use the shorthand that a dependent variable evaluated at a rescaled variable should be interpreted by the proper scalings in the original \((r, t)\) variables.

The outer wall changes by a distance \(O(\epsilon^{3/2}) \). If we denote \(y_R \) as the position of the outer boundary in the \(y \)-coordinates, then \(y_R = \frac{r}{\epsilon^2 \tau^2} = \epsilon r_R(\tau) \). The boundary condition that must be upheld is \(p_R(\tau) = \frac{b^2}{\tau}(\rho - 1) = e^{-\tau^2} \) so that

\[
p_1(r_R(\tau), \tau) + \epsilon^{1/2} p_2(r_R(\tau), \tau) = \frac{1}{b^2} e^{-\tau^2}.
\]

We can now perform a Taylor expansion (seeing as the problem is linear and the forcing terms are continuous and differentiable). Keeping just a few terms, we obtain \(b^2 (p_1(0, \tau) + \rho_1 y(0, \tau)(\epsilon r_R)) + \epsilon^{1/2} p_2(0, \tau) = e^{-\tau^2} \) which implies

\[
(3.1) \quad p_1(0, \tau) = \frac{1}{b^2} e^{-\tau^2} \quad \text{and} \quad p_2(0, \tau) = 0.
\]

As far as initial conditions go,

\[
(3.2) \quad p_1(y, -\infty) = p_2(y, -\infty) = v_0(y, -\infty) = v_1(y, -\infty) = 0.
\]

3.1.2. Riemann Invariants.

Both the leading order and first correction terms can be written in the form

\[
(3.3) \quad \begin{pmatrix} p_y \\ v_y \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ b^2 & 0 \end{pmatrix} \begin{pmatrix} p_y \\ v_y \end{pmatrix} = \begin{pmatrix} f(y, \tau) \\ g(y, \tau) \end{pmatrix}
\]

and such problems can be solved effectively with a technique known as Riemann Invariants \([3]\).

Observe the matrix \(2 \times 2 \) matrix has eigenvalues \(\pm b \) with corresponding left eigenvectors \(\ell^\pm = (\pm b, 1) \). Upon left multiplying \((3.3)\) by \(\ell^\pm \), we obtain \((\pm b p + v) r \pm b(\pm b p + v) y = \pm b f + g \). Thus, the system has characteristics. Denoting \(c^\pm = \pm b p + v \), we have that along \(dy/d\tau = \pm b, \quad dc^\pm/d\tau = \pm f + g \equiv h^\pm \). Given that \(\rho = v = 0 \) at \(\tau = -\infty \), (so \(c^\pm = 0 \) at \(\tau = -\infty \)) we can compute \(c^+(y, \tau) = 0 + \int_{-\infty}^{\tau} h(\tilde{y}(\tau), \tilde{\tau}) d\tilde{\tau} \) where \(\tilde{y}(\tilde{\tau}) = y + b(\tilde{\tau} - \tau) \) describes the straight pathway along the rightgoing characteristic starting at \(\tau = -\infty \) and reaching \((y, \tau)\). Thus,

\[
(3.4) \quad c^+(y, \tau) = \int_{-\infty}^{\tau} h^+(y + b(\tau - \tilde{\tau}), \tilde{\tau}) d\tilde{\tau}.
\]

To find \(c^-(y, \tau) \), we need to know its value at the point along the \(\tau \)-axis whose leftgoing characteristics eventually reach \((y, \tau)\). As \(c^+ \) is known along the \(\tau \)-axis, and \(\rho \) is also specified there, we can find \(c^- \). The leftgoing characteristic path leading to \((y, \tau)\) can be described by \((\tilde{y}(\tau), \tilde{\tau}) = (b(\tau - \tilde{\tau}), \tilde{\tau}) \) for \(\tau + y/b \leq \tilde{\tau} \leq \tau \). From \(c^+(0, \tau + y/b) = b\rho(0, \tau + y/b) + v(0, \tau + y/b) \) we get \(c^-(0, \tau + y/b) = -b\rho(0, \tau + y/b) + v(0, \tau + y/b) = c^+(0, \tau + y/b) - 2b\rho(0, \tau + y/b) \). We thus have

\[
(3.5) \quad c^-(y, \tau) = c^+(0, \tau + y/b) - 2b\rho(0, \tau + y/b) + \int_{\tau+y/b}^{\tau} h^-(b(\tau - \tilde{\tau}), \tilde{\tau}) d\tilde{\tau}.
\]
Given $c \pm$, we can recover

$$
(3.6) \quad \rho = \frac{1}{2b}(e^+ - c^-) \quad \text{and} \quad v = \frac{1}{2}(e^+ + c^-).
$$

3.1.3. Leading Order.

At leading order, using (3.2) and (3.1)

$$
\left(\begin{array}{c}
\rho_{1,\tau} \\
\nu_{1,\tau}
\end{array} \right) + \frac{1}{b^2} \left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \left(\begin{array}{c}
\rho_{1,\nu} \\
\nu_{1,\nu}
\end{array} \right) = 0,
$$

$\rho(0, \tau) = \frac{1}{b^2} e^{-\tau^2}$, $\rho(y, -\infty) = v(y, -\infty) = 0$. Thus, $c^+(y, \tau) = 0$ by (3.4) since the forcing function $h = 0$. And $c^-(y, \tau) = -2b \frac{1}{b^2} e^{-(\tau+y/b)^2} = -\frac{2}{b} e^{-(\tau+y/b)^2}$ by (3.5). We then use (3.6) to get

$$
(3.7) \quad \rho_1(y, \tau) = \frac{1}{b^2} e^{-(\tau+y/b)^2}
$$

and

$$
(3.8) \quad v_0(y, \tau) = \frac{-1}{b} e^{-(\tau+y/b)^2}.
$$

3.1.4. Correction.

At the next order, we obtain

$$
\left(\begin{array}{c}
\rho_{2,\tau} \\
\nu_{1,\tau}
\end{array} \right) + \frac{1}{b^2} \left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \left(\begin{array}{c}
\rho_{2,\nu} \\
\nu_{2,\nu}
\end{array} \right) = \left(\begin{array}{c}
-2v_0 \\
0
\end{array} \right)
$$

subject to $\rho_2(0, \tau) = 0$, $\rho_2(y, -\infty) = v_1(y, -\infty) = 0$ as per (3.1) and (3.2). In this case, $h^\pm = \mp 2bv_0$. By (3.4),

$$
c^+(y, \tau) = \int_{-\infty}^{\tau} (-2b)\nu_0(y + \tilde{\tau} - \tau, \tilde{\tau})d\tilde{\tau} = \int_{-\infty}^{\tau} e^{-(2\tau+y/b-\tau)^2}d\tilde{\tau}.
$$

We can evaluate this integral with a substitution $u = 2\tilde{\tau} + y/b - \tau$ to get

$$
c^+ = \int_{-\infty}^{\tau+y/b} e^{-u^2}du = \int_{-\tau-y/b}^{\infty} e^{-u^2}du = \frac{\sqrt{\pi}}{2} \text{erfc}(\tau - y/b).
$$

Similarly, by (3.5),

$$
c^-(y, \tau) = \frac{\sqrt{\pi}}{2} \text{erfc}(\tau - y/b) - 0 + \int_{\tau+y/b}^{\tau} (2b)\nu_0(b(\tilde{\tau} - \tau), \tilde{\tau})d\tilde{\tau} = \frac{\sqrt{\pi}}{2} \text{erfc}(\tau - y/b) + \frac{2y}{b} e^{-(\tau+y/b)^2}.
$$

We once again use (3.6) to furnish

$$
\rho_2(y, \tau) = \frac{-y}{b^2} e^{-(\tau+y/b)^2} \quad \text{and} \quad v_1(y, \tau) = \frac{\sqrt{\pi}}{2} \text{erfc}(\tau - y/b) + \frac{y}{b} e^{-(\tau+y/b)^2}.
$$
3.1.5. Region I Results. To leading order, the density and velocity are described by leftgoing plane waves. Due to the scalings, we have been looking on such a small scale that the system hasn’t quite “noticed” the spherical nature of the problem and everything appears flat (for $y = O(1)$). The divergent terms with y prefactors, however, actually result from the spherical geometry as we shall see in the following section.

We have

$$\rho \sim 1 + \epsilon \frac{1}{b^2} e^{-(\tau+y/b)^2} - \epsilon^{3/2} \frac{y}{b^2} e^{-(\tau+y/b)^2}$$

and

$$v \sim \epsilon^{1/2} \frac{1}{b} e^{-(\tau+y/b)^2} + \epsilon \left(\frac{\sqrt{\pi}}{2} \text{erfc}(-\tau - y/b) + \frac{y}{b} e^{-(\tau+y/b)^2} \right).$$

A plot of these solutions at $\tau = 1$ is given in figure 2. In the r-coordinates, the characteristic widths of these pulses are $O(\sqrt{\epsilon})$. The plot includes numerical validation of the results which are discussed in more detail in section 4.

3.2. Region II.

3.2.1. Spherical Focusing Setup. Having obtained the basic shape of the pulses being formed, we can now analyze how these pulses behave as they move towards the centre of the sphere. From region I, we have $\rho \sim 1 + \epsilon \rho_1 + \epsilon^{3/2} \rho_2$ and $v \sim \epsilon^{1/2} v_0 + \epsilon v_1$ and we shall make a similar ansatz here. We will consider $r = O(1)$ and choose a time scale $t = \epsilon^k T$. With these scalings, (2.11) becomes:

$$\epsilon^{-k} (\epsilon \rho_1 + \epsilon^{3/2} \rho_2)_r + (\epsilon^{1/2} v_0 + \epsilon v_1)_r + \frac{2}{r} (\epsilon^{1/2} v_0 + \epsilon v_1) = 0$$

$$\epsilon^{-k} ((\epsilon^{1/2} v_0 + \epsilon v_1)_r + \epsilon^{3/2} \rho_2)_r + (\epsilon^2 \rho_0 + \epsilon v_1^2)_r + \frac{2}{r} (\epsilon^2 \rho_0^2) = 0.$$

Clearly $k = 1/2$ yields a suitable balance. The equations are:

$$\rho_1, T + v_0, r + \frac{2}{r} v_0 = 0 \quad \text{and} \quad v_0, T + b^2 \rho_1, r = 0$$

where the identical equations are upheld for ρ_2 and v_1.

The initial and boundary conditions are more subtle here. They cannot be written down clearly because of the different time scales (typically, to match at $T = 0$, we would require $\tau \to \infty$ but in this case, the solutions found in region I tend to 0). However, by solving the hyperbolic systems at different orders, we can find the functional form of the solution, which allows us to find the solutions by matched asymptotics.

3.2.2. Spherical Linear Acoustic Limit. For the two leading orders, the systems of PDEs that need to be solved are of the form

$$\rho_T + v_r + \frac{2}{r} v = f \quad \text{and} \quad v_T + b^2 \rho_r = g.$$

Such equations also appear in linear acoustic problems, often with $f = g = 0$ (and in our case we will not need to explicitly solve such an equation with $f, g \neq 0$).
Fig. 2: Plots depicting the profiles of the velocity and density at a very small value of t to validate the asymptotics of region 1. In the case of the second row, the two term asymptotic expansions agree so well with the numerics the plots cannot be distinguished.

To solve this, we will make use of a velocity potential $\phi(r, T) = \int_{s=0}^{r} v(s, T) ds$. With this substitution, we have

$$\phi_T + \phi_{rr} + \frac{2}{r} \phi_r = f$$
and $\phi_{rr} + b^2 \phi_r = g$.

Integrating (3.12) from $r = \infty$, assuming $\rho = 0$ at $r = \infty$, we have $\phi_T(r, T) + b^2 \rho(r, T) = \int_{s=0}^{r} g(s, T) ds = G(r, T)$ so that $\phi_{TT} = -b^2 \rho_T + G_T$. Using (3.12) here now gives $\phi_{TT} = -b^2(-\phi_{rr} + \frac{2}{r} \phi_r + f) + G_T$ so

$$\phi_{TT} = b^2(\phi_{rr} + \frac{2}{r} \phi_r) + G_T - b^2 f.$$

Note that by taking a time derivative of (3.11)_1 and a space derivative of (3.11)_2 we have

$$\rho_{TT} = -v_{T} - \frac{2}{r} v_T + f_T$$
and $v_{TT} = g_r - b^2 \rho_{rr}$.

Equations (3.14)\textsubscript{2} and (3.14)\textsubscript{1} can then be used in (3.11)\textsubscript{1} to obtain \(\rho_{TT} = -(g_r - b^2 \rho_{rr}) - \frac{2}{r}(g - b^2 \rho_r) + f_T \) so that

\begin{equation}
(3.15) \quad \rho_{TT} = b^2(\rho_{rr} + \frac{2}{r} \rho_r) + f_T - \frac{2}{r}g - g_r.
\end{equation}

A symmetry argument now helps to solve (3.13) and (3.15). If \(\phi = \Phi/r \) and \(\rho = K/r \) then \(\phi_{rr} + \frac{2}{r} \phi_r = \frac{\Phi}{r^2} \) and similarly for \(K \). Thus we can transform these equations into one-dimensional wave equations [16]:

\begin{equation}
(3.16) \quad \Phi_{TT} = b^2 \Phi_{rr} + S_1(r, T), \quad K_{TT} = b^2 K_{rr} + S_2(r, T)
\end{equation}

with \(S_1(r, T) = r(G_T - b^2 f) \), and \(S_2(r, T) = r(f_T - \frac{2}{r} g - g_r) \).

3.2.3. Leading Order and Correction in Outer Region.

The system of equations for \(\rho_1 \) and \(v_0 \) and \(\rho_2 \) and \(v_1 \) are the same, and in both cases the source terms are fortunately zero. With no source terms, and with only leftgoing waves (since there are no sources going right), the solutions of (3.16) are \(K = P(r + bT) \) and \(\Phi = Q(r + bT) \) respectively. Then, being mindful of the fact that the pulses generated have a width of size \(O(\sqrt{\epsilon}) \) and are leftgoing originating near \(r = 1 \), we can write the solutions to the systems of equations as

\[
\rho_1 = \frac{P_1(y + br)}{1 + \epsilon^{1/2} y}, \quad \rho_2 = \frac{P_2(y + br)}{1 + \epsilon^{1/2} y},
\]

\[
v_0 = \sqrt{\epsilon} \left(Q_0(y + br) - \frac{Q_0(r + \frac{1+k}{\sqrt{\epsilon}})}{r^2} \right), \quad v_1 = \sqrt{\epsilon} \left(Q_1(y + br) - \frac{Q_1(r + \frac{1+k}{\sqrt{\epsilon}})}{r^2} \right).
\]

We will now take these solutions and express them in the inner \((y, \tau)\)-coordinates. We will apply the Van-Dyke matching of inner and outer solutions [6], and since we have a two-term expansion for the inner solution, we also take two terms in the outer solution terms. We have \(t = \epsilon \tau = \epsilon^{1/2} T \) so \(T = \epsilon^{1/2} \tau \) and \(r = 1 + \epsilon^{1/2} y \) so that \(\frac{r - 1 - \frac{k}{\sqrt{\epsilon}}}{\sqrt{2}} = y + br \).

\[
\rho_1 = \frac{\bar{P}_1(y + br)}{1 + \epsilon^{1/2} y} = \bar{P}_1(y + br) - \epsilon^{1/2} y \bar{P}_1(y + br), \quad \rho_2 = \frac{\bar{P}_2(y + br)}{1 + \epsilon^{1/2} y} = \bar{P}_2(y + br) - \epsilon^{1/2} y \bar{P}_2(y + br),
\]

\[
v_0 = \frac{\bar{Q}_0(y + br)}{1 + \epsilon^{1/2} y} - \epsilon^{1/2} \bar{Q}_0(y + br) = \frac{\bar{Q}_0(y + br)}{1 + \epsilon^{1/2} y} = \bar{Q}_0(y + br) + \epsilon^{1/2} (-\bar{Q}_0(y + br) - \bar{Q}_0(y + br)),
\]

\[
v_1 = \frac{\bar{Q}_1(y + br)}{1 + \epsilon^{1/2} y} - \epsilon^{1/2} \bar{Q}_1(y + br) = \frac{\bar{Q}_1(y + br)}{1 + \epsilon^{1/2} y} = \bar{Q}_1(y + br) + \epsilon^{1/2} (-\bar{Q}_1(y + br) - \bar{Q}_1(y + br)).
\]

Now we write

\[
(1 + \epsilon \rho_1 + \epsilon^3 \rho_2)_{outer} = (1 + \epsilon \rho_1 + \epsilon^3 \rho_2)_{inner}
\]

\[
1 + \epsilon \left(\frac{1}{b^2} e^{-(r+y/b)^2} \right) + \epsilon^{3/2} \left(-\frac{y}{b^2} e^{-(r+y/b)^2} \right) = 1 + \epsilon (\bar{P}_1(y + br)) + \epsilon^{3/2} (-y \bar{P}_1(y + br) + \bar{P}_2(y + br))
\]

so that \(\bar{P}_1(x) = \frac{1}{b^2} e^{-(x/b)^2} \) and \(\bar{P}_2(x) = 0 \). Doing the same for the velocity, we write:
we rescale space and time. We let lose their validity. To describe the region where the pulses have grown and arrive at the inner wall, we can be confident in the scalings chosen. We will now consider boundary conditions. For a

\[v^2 \approx \frac{1}{br} e^{-\frac{(r-\frac{1}{4}bT)^2}{b^2}} + \epsilon \left(\frac{\sqrt{\pi}}{2} \text{erf}(\frac{y}{b}) + \frac{y}{b} e^{-\frac{(r+y/b)^2}{2}} \right) = \epsilon^{1/2} Q_0(y + br) \]

\[\rho \sim 1 + \epsilon \left(\frac{1}{br} e^{-\frac{(r-\frac{1}{4}bT)^2}{b^2}} + \epsilon \left(\frac{\sqrt{\pi}}{2} \text{erf}(\frac{r - \frac{1}{4}bT}{b\sqrt{\epsilon}}) \right) \right) + o(\epsilon) \]

\[v \sim \epsilon^{1/2} \left(\frac{1}{br} e^{-\frac{(r-\frac{1}{4}bT)^2}{b^2}} + \epsilon \left(\frac{\sqrt{\pi}}{2} \text{erf}(\frac{y}{b}) + \frac{y}{b} e^{-\frac{(r+y/b)^2}{2}} \right) \right) + o(\epsilon) \]

3.2.4. Leading Order and Correction in Inner Region. As the pulses move inwards, due to the $1/r$ and $1/r^2$ terms, the amplitudes grow and the asymptotic expansions we arrived at above lose their validity. To describe the region where the pulses have grown and arrive at the inner wall, we rescale space and time. We let $r = \epsilon^{1/2} \sigma$ and $t - t_s = \epsilon t$, where t_s is a shifting parameter such that the peak of the leftgoing pressure wave will have reached the plasma wall at $r = \epsilon^{1/2}$ at $t = 0$. We anticipate different scalings for the asymptotic expansions. From $r = O(1)$ to $r = O(\sqrt{\epsilon})$, the first perturbation term in the density perturbation given in (3.17) should have grown from $O(\epsilon)$ to $O(\sqrt{\epsilon})$. Similarly, from (3.18), the velocity amplitude should have grown from $O(\sqrt{\epsilon})$ to $O(1)$ and the velocity term that was $O(\epsilon)$ should also become $O(1)$ since it grows like $1/r^2$. Therefore, in this next inner region, we write $\rho \sim 1 + \epsilon^{1/2} \rho_1 + \epsilon \rho_2$ and $v \sim v_0 + \epsilon^{1/2} v_1$. Using $\partial_r = \epsilon^{-1/2} \partial_\sigma$ and $\partial_t = \epsilon^{-1} \partial_t$, (2.11) becomes

\[\epsilon^{-1} (\epsilon^{1/2} \rho_1 + \epsilon \rho_2)_{\bar{t}} + \epsilon^{-1/2} (v_0 + \epsilon^{1/2} (v_1 + \rho_1 v_0))_{\sigma} + \epsilon^{-1/2} \frac{2}{\sigma} (v_0 + \epsilon^{1/2} (v_1 + \rho_1 v_0)) = 0 \]

\[\epsilon^{-1} (v_0 + \epsilon^{1/2} (v_1 + \rho_1 v_0))_{\bar{t}} + \epsilon^{-3/2} \frac{2}{\sigma} (\epsilon^{1/2} \rho_1 + \epsilon \rho_2)_{\sigma} + \epsilon^{-1/2} (v_0^2)_{\sigma} + \epsilon^{-1/2} \frac{2}{\sigma} v_0^2 = 0 \]

which upon looking at balancing terms yield two sets of PDEs:

\[\rho_{1,\bar{t}} + v_{0,\sigma} + \frac{2}{\sigma} v_0 = 0, \quad v_{0,\bar{t}} + b^2 \rho_{1,\sigma} = 0 \]

and

\[\rho_{2,\bar{t}} + v_{1,\sigma} + \frac{2}{\sigma} v_1 = -(\rho_1 v_0)_{\sigma} - \frac{2}{\sigma} \rho_1 v_0, \quad v_{1,\bar{t}} + b^2 \rho_{2,\sigma} = -(\rho_1 v_0)_{\sigma} - (v_0^2)_{\sigma} - \frac{2}{\sigma} v_0^2. \]

By virtue of the fact these PDEs can be solved and matched to (as done in the following paragraphs), we can be confident in the scalings chosen. We will now consider boundary conditions. For a
timescale that is \(O(\epsilon) \), given a velocity \(v = O(1) \), the inner wall can only move a distance \(O(\epsilon) \) and thus the inner wall position remains \(O(\sqrt{\epsilon}) \) (recall that \(r_L(-\infty) = \chi(\sqrt{\epsilon}) \)). We can find the leading order nonzero contribution to the inner wall motion in the \((\sigma, \hat{t})\)-coordinates. We define \(\sigma_L = r_L/\sqrt{\epsilon} \). Then \(\sigma_L(\hat{t}) = \chi + \int_{-\infty}^{\hat{t}} \sqrt{\epsilon} v(\sigma_L(s), \dot{s}) \, ds \). The factor of \(\sqrt{\epsilon} \) comes from the fact that \(\frac{dr_L}{dt} = v(r_L(t), t) = O_{-1}^{1/2} \frac{d\sigma_L}{dt} = \epsilon^{-1/2} \frac{d\sigma_L}{dt} \). Thus,

\[
\sigma_L(\hat{t}) = \chi + \int_{-\infty}^{\hat{t}} \sqrt{\epsilon} v(\chi + O(\sqrt{\epsilon}), \dot{s}) \, ds = \chi + \epsilon^{1/2} \int_{-\infty}^{\hat{t}} v(\chi, \dot{s}) \, ds + O(\epsilon).
\]

As the pressure at the inner wall is given by \(p = \gamma \epsilon^{3/2}/r_L^2 \), for \(r_L = O(\sqrt{\epsilon}) \), \(p = O(\epsilon^{3/2}) = \frac{\epsilon^{1/2}}{\gamma} (\epsilon^{1/2} \rho_1(\sigma_L, \hat{t}) + \epsilon \rho_2(\sigma_L, \hat{t}) + \ldots) \) so that by a Taylor expansion, \(\epsilon^{1/2} \rho_1(\chi, \hat{t}) + \epsilon^{1/2} \rho_1(\chi, \hat{t}) \int_{-\infty}^{\hat{t}} v_0(\chi, \dot{s}) \, ds + \rho_2(\chi, \hat{t}) + o(\epsilon) = 0 \). This gives us boundary conditions

\[
(3.21) \quad \rho_1(\chi, \hat{t}) = 0 \quad \text{and} \quad \rho_2(\chi, \hat{t}) = -\rho_1(\chi, \hat{t}) \int_{-\infty}^{\hat{t}} v_0(\chi, \dot{s}) \, ds.
\]

If we again consider (3.19) in potential form with \(\phi_0(\sigma, \hat{t}) = \int_{-\infty}^{\sigma} v_0(\sigma, \dot{\sigma}) \, d\dot{\sigma} \) then by integrating the equation from \(\sigma = -\infty \) to \(\sigma = \chi \), \(\phi_{0\ell}(\chi, \hat{t}) + b^2 \rho_1(\chi, \hat{t}) = 0 \) where we used \(\rho_1 = \phi_0 = 0 \) at \(\sigma = \infty \). Since \(\rho_1(\chi, \hat{t}) = 0 \), we must have

\[
(3.22) \quad \phi_{0\ell}(\chi, \hat{t}) = 0.
\]

Similarly by integrating (3.20) we have \(\phi_{1\ell}(\chi, \hat{t}) + b^2 \rho_2(\chi, \hat{t}) = \int_{-\infty}^{\chi} (-\rho(\chi, \hat{t}) - (v_0^2)_{\sigma} - \frac{2}{\sigma} v_0^2) \, d\sigma \) which with (3.21)_2 gives

\[
(3.23) \quad \phi_{1\ell}(\chi, \hat{t}) = b^2 \rho_1(\chi, \hat{t}) \int_{-\infty}^{\chi} v_0(\chi, \dot{s}) \, ds + \int_{-\infty}^{\chi} (-\rho(\chi, \hat{t}) - (v_0^2)_{\sigma} - \frac{2}{\sigma} v_0^2) \, d\sigma.
\]

We can find the form of the solution to (3.19) using the solutions of (3.16) with \(S_1 = S_2 = 0 \). We note that there are both incoming signals (from \(\sigma = \infty \)) and outgoing signals (from the interaction of the pulses with the plasma) so we have waves propagating in both directions. Also, we are on a spatial scale of \(O(\sqrt{\epsilon}) \) so that it is not necessary to rescale the argument of the solutions like we did in the previous section. As \(\hat{t} \to -\infty \), we will neglect the rightgoing wave and consider only the incoming wave. We write \(\rho_1 = \frac{P^+(\sigma + b\hat{t})}{\sigma} \), \(v_0 = \frac{Q^+(\sigma + b\hat{t})}{\sigma} - \frac{Q^+(\sigma + b\hat{t})}{\sigma} \).

Expressing the outer solutions in \((r, T)\)-coordinates in the inner coordinates and going to leading order, and using the fact that any function of \(\frac{r - 1 + b\hat{t}}{b\sqrt{\epsilon}} \) is a function of \(\frac{\pi - \chi}{b} + \hat{t} \), we have

\[
(1 + \epsilon^{1/2} \rho_1)_{\text{inner}} = (1 + \epsilon^{1/2} \rho_1)_{\text{outer}}
\]

\[
1 + \epsilon^{1/2} \frac{P^+(\frac{\pi - \chi}{b} + \hat{t})}{\sigma} = 1 + \epsilon \left(\frac{1}{b^2 \sigma} e^{-\frac{\pi - \chi}{b} + \hat{t}} \right)^2.
\]

giving us a leading order solution in the inner region for the density

\[
(3.24) \quad \rho_1 = \frac{1}{b^2 \sigma} e^{-\frac{\pi - \chi}{b} + \hat{t}^2} \quad (\hat{t} \to -\infty).
\]
Also,

\[
(v_0)_{\text{inner}} = (\epsilon^{1/2} v_0 + \epsilon v_1)_{\text{outer}}
\]

\[
\frac{\tilde{Q}_0}{\sigma} \left(\frac{\sigma - \chi}{b} + \hat{t} \right) - \frac{\tilde{Q}_0}{\sigma^2} \left(\frac{\sigma - \chi}{b} + \hat{t} \right) = \epsilon^{1/2} \left(\frac{-1}{b \sigma \epsilon^{1/2}} e^{-\left(\frac{\sigma - \chi}{b} + \hat{t} \right)^2} \right) + \epsilon \left(\frac{\sqrt{\pi}}{2 \sigma^2} \text{erfc} \left(\frac{\sigma - \chi}{b} + \hat{t} \right) \right)
\]

so that \(v_0 = \frac{1}{b \sigma} e^{-\left(\frac{\sigma - \chi}{b} + \hat{t} \right)^2} + \frac{\sqrt{\pi}}{2 \sigma^2} \text{erfc} \left(\frac{\sigma - \chi}{b} + \hat{t} \right) \).

These solutions are only valid for \(\hat{t} \to -\infty \). To get solutions for other times, we first find the potential as \(\phi_0 = \int_{\infty}^{\sigma} v_0(\sigma, \hat{t}) d\sigma \) so that \(\phi_0 = -\frac{\sqrt{\pi}}{2 \hat{t}} \text{erfc} \left(\frac{\sigma - \chi}{b} - \hat{t} \right) \quad (\hat{t} \to -\infty) \). From equation (3.21), in order for \(\rho_1 \) to be 0 along \(\sigma = \chi \) and to have the incoming solution given in (3.24), the solution is

\[(3.25)\]

\[\rho_1 = \frac{1}{b^2 \sigma} (e^{-\left(\frac{\sigma - \chi}{b} + \hat{t} \right)^2} - e^{-\left(\frac{\sigma - \chi}{b} + \hat{t} \right)^2})\]

For the potential, we note that \(\phi_0(\chi, -\infty) = -\frac{\sqrt{\pi}}{2\chi} \text{erfc} (\infty) = 0 \) so that by (3.22), \(\phi_0(\chi, \hat{t}) = 0 \) is the boundary condition for all \(\hat{t} \). Using this, and the wave solution to \(\phi_0 \), we must have that

\[\phi_0 = \frac{\sqrt{\pi}}{\sigma} (\text{erf}(-\frac{\chi - \sigma}{b} - \hat{t}) - \text{erf}(-\frac{\sigma - \chi}{b} - \hat{t}))\]

so

\[(3.26)\]

\[v_0 = \frac{\sqrt{\pi}}{2\sigma^2} (\text{erf}(-\frac{\sigma - \chi}{b} - \hat{t}) - \text{erf}(-\frac{\sigma - \chi}{b} - \hat{t})) - \frac{1}{b\sigma} (e^{-\left(\frac{\sigma - \chi}{b} + \hat{t} \right)^2} + e^{-\left(\frac{\sigma - \chi}{b} + \hat{t} \right)^2})\]

In writing the above equation, we used the fact that \(\text{erf}(-x - y) - \text{erf}(x - y) = (1 - \text{erf}(-x - y)) - (1 - \text{erf}(x - y)) = \text{erf}(x - y) - \text{erf}(-x - y) \).

We note that the leading order density perturbation and velocity profiles grow in amplitude like \(1/r \), or close to such scaling, at their peak values as the profiles move radially inwards. This is consistent with known results for fluid dynamics with spherical symmetry [10]. Given the equation of state (2.12), this also means the peak pressure grows like \(1/r \). To be more precise, the asymptotic profile for \(\rho_1 \) and \(p_0 \) do grow like \(1/r \), but because \(v_0 \) in the inner region also includes an error function term that reduces the magnitude of the Gaussian peak, the scaling may be slightly smaller. A typical profile of the velocity and pressure, computed numerically [12] is depicted in figure 3. We also observe that \(v_0 \) and \(\rho_1 \) tend to 0 as \(\hat{t} \to \infty \) and the total distance the plasma wall moves due to these leading order terms is \(O(1) \times O(\epsilon) = O(\epsilon) \). More precisely the leading order displacement solely due to the \(v_0 \) term is

\[(3.27)\]

\[\delta_0 = \epsilon \int_{-\infty}^{\infty} v_0(\chi, \hat{t}) d\hat{t} = \epsilon \int_{-\infty}^{\infty} \frac{-2}{b\chi} e^{-\hat{t}^2} d\hat{t} = -\frac{2\sqrt{\pi}\epsilon}{b\chi} . \]

Any nonnegligible compression will be a result of the correction terms. Equations (3.20), (3.21) and (3.23) give insights into what the effects of these correction terms are, which we discuss in the following portion of this paper.

3.2.5. Resultant Velocity Field. Given that most of the localized disturbances are reflected, the driving force for compression, if a substantial compression is to occur, must come from a residual negative radial velocity of the inner wall after the waves come in. We begin by considering the
Fig. 3: The pulses are moving to the left. The pressure peak grows like $1/r$ as the pulses move inwards. The velocity has a peak with negative value and one with positive value. The negative value grows roughly like $1/r$.

systems given by (3.20) in a time-independent regime (a long time after the v_0 and p_1 pulses have interacted with the inner wall). We then find that $v_1 + \frac{2}{\sigma} v_1 = 0$ and $p_2 = 0$ so that $v_1 = A/\sigma^2$ and $p_2 = B$. Physically, $p_2(\sigma = \infty) = 0$ so that $B = 0$, but the constant A cannot be determined. We can, however determine $\phi_1 = \int^\sigma_0 \frac{A}{\sigma^2} d\sigma = -A/\sigma$ ($\hat{t} \to \infty$). This suggests that the correction term leaves a velocity field behind that may do further work to compress the plasma. Strictly speaking, we show that the value of ϕ_1 approaches a constant at $\sigma = \chi$ as $\hat{t} \to \infty$ but section 4.3 validates this residual velocity field numerically.

Observe that $-\chi \phi_1(\chi, \infty) = A$ and $\phi_1(\chi, \infty) = \phi_1(\chi, -\infty) + \int_{-\infty}^{\infty} \phi_1(\chi, \hat{t}) d\hat{t}$.

At $\hat{t} = -\infty$, $v_1 = 0$, and $\phi_1(\chi, -\infty) = 0$. Then by using (3.23), we have

$$
\phi(\chi, \infty) = \int_{-\infty}^{\infty} b^2 \rho_{1\sigma}(\chi, \hat{t}) \int_{-\infty}^{i} v_0(\chi, \hat{s}) d\hat{s} + \int_{-\infty}^{\chi} \left(-\frac{\rho_1 v_0}{\sigma} - \frac{2}{\sigma} v_0^2 \right) d\sigma d\hat{t} \\
= \int_{-\infty}^{\infty} b^2 \rho_{1\sigma}(\chi, \hat{t}) \int_{-\infty}^{i} v_0(\chi, \hat{s}) d\hat{s} d\hat{t} - \int_{-\infty}^{\infty} \int_{-\infty}^{\chi} \left(\rho_1 v_0\right) d\sigma d\hat{t} \\
- \int_{-\infty}^{\infty} \int_{-\infty}^{\chi} v_0^3 d\sigma d\hat{t}.
$$

15
We can simplify these terms and there is cancellation. Indeed,

\[T_1 = \int_{-\infty}^{\infty} \frac{-4}{b^2 \chi} e^{-\frac{t^2}{b^2}} \int_{-\infty}^{t} \frac{-2}{b^2 \chi} e^{-\frac{\sigma^2}{b^2}} d\sigma d\tilde{t} = \int_{-\infty}^{\infty} \frac{4\sqrt{\pi}}{b^2 \chi^2} te^{-\frac{t^2}{b^2}} (1 - \text{erf}(-\tilde{t})) d\tilde{t} \]

\[= \frac{4\sqrt{\pi}}{b^2 \chi^2} \int_{-\infty}^{\infty} te^{-\frac{t^2}{b^2}} \text{erf}(\tilde{t})d\tilde{t} \quad \text{(by parts)} \]

\[= \frac{4\sqrt{\pi}}{b^2 \chi^2} \left[-\frac{1}{2} e^{-\frac{t^2}{b^2}} \text{erf}(\tilde{t}) \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-2\tilde{t}^2} d\tilde{t} = \frac{2\sqrt{2}\sqrt{\pi}}{b^2 \chi^2} \]

\[T_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\rho_1 v_0)_t d\sigma d\tilde{t} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\rho_1 v_0)_t d\tilde{d} \]

\[= \int_{-\infty}^{\infty} \frac{4}{b^2 \chi^2} e^{-\frac{t^2}{b^2}} d\tilde{t} = \frac{2\sqrt{2}\sqrt{\pi}}{b^2 \chi^2} \]

\[T_3 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (v_0^2)_t d\sigma d\tilde{t} = \int_{-\infty}^{\infty} v_0(\chi, \tilde{t})^2 d\tilde{t} \]

\[= \int_{-\infty}^{\infty} \frac{4}{b^2 \chi^2} e^{-\frac{t^2}{b^2}} d\tilde{t} = \frac{2\sqrt{2}\sqrt{\pi}}{b^2 \chi^2} \]

\[T_4 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{2}{\sigma} v_0^2 d\sigma d\tilde{t} = - \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{2}{\sigma} v_0^2 d\sigma d\tilde{t} \]

Adding all terms together gives us \(\phi(\chi, \tilde{t}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{2}{\sigma} v_0^2 d\sigma d\tilde{t} > 0 \). Thus, \(A < 0 \) and there is a remaining velocity field in the negative radial direction that can compress the plasma. Obtaining a simple expression for the exact value of this integral is not possible, but by taking note of the characteristic shape of the integrand, we can approximate it with high precision. We remark that

\[
\begin{align*}
v_0^2 &= \left[\frac{\sqrt{\pi}}{2\sigma^2} (\text{erf}(\frac{\sigma - \chi}{b} - \tilde{t}) - \text{erf}(\frac{-\chi - \sigma}{b} - \tilde{t})) - \frac{1}{b\sigma} (e^{-(\frac{\sigma - \chi}{b} + \tilde{t})^2} + e^{-(\frac{-\chi - \sigma}{b} + \tilde{t})^2}) \right]^2 \\
&\approx \frac{1}{b^2 \sigma^2} (e^{-(\frac{\sigma - \chi}{b} + \tilde{t})^2} + e^{-(\frac{-\chi - \sigma}{b} + \tilde{t})^2})^2 \\
&\approx \frac{1}{b^2 \sigma^2} (e^{-2(\frac{\sigma - \chi}{b} + \tilde{t})^2} + e^{-2(\frac{-\chi - \sigma}{b} + \tilde{t})^2}) \\
&\approx \frac{1}{b^2 \sigma^2} \sqrt{\frac{\pi}{2}} (\delta(\tilde{t} - \frac{\sigma - \chi}{b}) + \delta(\tilde{t} - \frac{-\chi - \sigma}{b}))
\end{align*}
\]

We justify the first approximation by noting the terms with \(\text{erf} \) are modulated by a \(1/\sigma^2 \) which decays to 0 faster as \(\sigma \to \infty \) than terms with \(1/\sigma \) and that for \(\sigma \approx \chi \), the two error functions are being subtracted and have similar arguments. The second approximation comes from the fact that a Gaussian is dominated by its behaviour near its maximum and there is little overlap between the two Gaussians. The final approximation comes from approximating each Gaussian by its area modulating a delta function centred at its maximum.
Table 4: Verifying the numerical validity of the approximation given in (3.28) by doubling/halving the governing parameters and computing I^* with the approximation of v_0^2 given in (3.28) and the numerically integrated value.

From the approximation in (3.28),

$$\phi_1(\chi, \infty) = I^* \approx \int_{-\infty}^{\infty} \int_{-\chi}^{\infty} \frac{2}{\sigma} b^2 \sigma^2 \sqrt{2\pi} (\delta(\dot{t} - \frac{\sigma - \chi}{b}) + \delta(\dot{t} - \frac{\chi - \sigma}{b})) d\sigma dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{2\pi} (\delta(\dot{t} - \frac{\sigma - \chi}{b}) + \delta(\dot{t} - \frac{\chi - \sigma}{b})) d\sigma$$

$$= \int_{-\infty}^{\infty} \frac{2\sqrt{2\pi}}{b^2 \sigma^3} d\sigma = \frac{\sqrt{2\pi}}{b^2 \chi^2}.$$

Therefore $A \approx \frac{\sqrt{2\pi}}{b^2 \chi^2}$. For the remainder of this paper, we will take this approximations as the value of I^*. Table 4 computes the integral $\int_{-\infty}^{\infty} \int_{-\chi}^{\infty} \frac{2}{\sigma} v_0^2 d\sigma dt$ using (3.28) and numerically, and the results show good agreement. With this A, the long-time velocity profile is $v \sim \sqrt{t} v_1 = \sqrt{\frac{\sqrt{2\pi}}{b^2 \chi^2}}$ (3.29).

3.2.6. Region II Results. After the pulses have interacted with the inner wall, there remains a residual velocity field which remains as a time-independent solution of the asymptotic equations. We find that $\rho \sim 1 + o(\epsilon)$ and $v \sim \frac{\sqrt{2\pi}}{b^2 \chi^2} \epsilon^{1/2} + o(\epsilon^{1/2})$.

3.3. Region III.

3.3.1. An Energy Argument. At this point we now compute the remaining kinetic energy (all the particles with a negative radial velocity), assuming there are no reflections at the right boundary and that all the useful energy is in the vicinity of the inner wall. The kinetic energy density is $E = \frac{1}{2} \rho v^2$, and to leading order this is $E = \frac{1}{2}(1)(\epsilon^{1/2} v_1)^2 = \frac{1}{2} v_1^2$. The total kinetic energy is $4\pi \int_{r_L}^{r^*} E r^2 dr$, which in the inner variables at leading order is $E = \frac{\epsilon^{3/2}}{2} \int_{\chi}^{r^*} v_1(\sigma)^2 \sigma^2 d\sigma = \frac{4\pi^2 \epsilon^{5/2}}{b^2 \chi^2} \int_{\chi}^{r^*} \frac{d\sigma}{\sigma^2}.$ The total possible compression energy is

$$E = \frac{4\pi^2 \epsilon^{5/2}}{b^2 \chi^2}. \quad (3.30)$$

The work done in compressing the plasma from $r_L = \chi \sqrt{\epsilon}$ to $r_L = r^*$ the minimum radius $- \int PdV$ is $-4\pi \int_{\chi \sqrt{\epsilon}}^{r^*} P(r_L) r_L^2 dr_L = -4\pi \int_{\chi \sqrt{\epsilon}}^{r^*} \frac{2}{r_L} dr_L$ giving us the total work done

$$W = 4\pi \gamma \epsilon^{7/2} \frac{1}{r^*} - \frac{\epsilon^{-1/2}}{\chi}. \quad (3.31)$$
Equating $E = W$ in (3.30) and (3.31) implies \(4\pi^2T^3/3\xi^4 = 4\pi\gamma\epsilon^{7/2}(\frac{1}{r} - \frac{\epsilon^{1/2}}{r}) \) so that \(r^* = O(\epsilon) \) with \[r^* \sim \frac{b^4\gamma^3\epsilon}{\pi \epsilon}. \] (3.32)

This sort of energy argument was originally used by Lord Rayleigh in considering the compression of a bubble in an incompressible fluid [13]. We present a formal asymptotic argument for this result in the next two subsections.

3.3.2. Outer Region for Motion of Plasma Boundary

To proceed with formal asymptotics, we need to consider higher orders of the equations of mass and momentum conservation. By taking the equations of (2.11) to two higher orders than presented in (3.20) with \(\rho \sim 1 + \epsilon^{1/2}\rho_1 + \epsilon\rho_2 + \epsilon^{3/2}\rho_3 + \epsilon^2\rho_4 \) and \(v \sim v_0 + \epsilon^{1/2}v_1 + \epsilon v_2 + \epsilon^{3/2}v_3 \) we obtain the following balances:

\[E = \sum_i \rho_i v_i, \quad \sum_i \rho_i v_i = 0 \]

\[\sum_i \rho_i v_i = 0 \]

\[\rho_3, i + v_3, \sigma + \frac{2}{\sigma}v_2 = -(\rho_2 v_0 + \rho_1 v_1) \sigma - \frac{2}{\sigma}(\rho_2 v_0 + \rho_1 v_1) \]

\[v_2, i + \frac{b^2\rho_3, \sigma}{\sigma} = -(\rho_1 v_0^2 + 2v_0 v_1) \sigma - \frac{2}{\sigma}(\rho_1 v_0^2 + 2v_0 v_1) - (\rho_2 v_0 + \rho_1 v_1) i \]

\[\rho_4, i + v_3, \sigma + \frac{2}{\sigma}v_3 = -(\rho_3 v_0 + \rho_2 v_1 + \rho_1 v_2) \sigma - \frac{2}{\sigma}(\rho_3 v_0 + \rho_2 v_1 + \rho_1 v_2) \]

\[v_3, i + \frac{b^2\rho_4, \sigma}{\sigma} = -(\rho_2 v_0^2 + 2\rho_1 v_0 v_1 + 2v_0 v_2 + v_1^2) \sigma - \frac{2}{\sigma}(\rho_2 v_0^2 + 2\rho_1 v_0 v_1 + 2v_0 v_2 + v_1^2) - (\rho_3 v_0 + \rho_2 v_1 + \rho_1 v_2) i \]

From our previous considerations of the behaviour of the solutions as \(t \to \infty \), we observe that (3.33) and (3.34) can also reach a steady-solution with \(\rho_3 = 0 \) and \(v_2 = \text{constant} \) since \(\rho_1, \rho_2, v_0 \) all tend to 0 which eliminates all forcing terms in the equations. Looking at (3.35) and (3.36) similarly, we actually have residual forcing terms that do not vanish as \(t \to \infty \), namely the terms with \(v_1^2 \). After a long time, we infer that \(\rho \sim 1 + \epsilon^2\rho_4 \) and \(v \sim \epsilon^{1/2}v_1 + ... \). By scaling so that \(t = \sigma \), an \(O(1) \) time-scale we obtain a new PDE system to evolve, which serves as an outer region for a problem describing the motion of the plasma radius. Our balance is:

\[v_1, \sigma + \frac{2}{\sigma}v_1 = 0, \quad v_1, \sigma + b^2\rho_4, \sigma + v_1^2 \sigma + \frac{2}{\sigma}v_1^2 = 0. \] (3.37)

Equation (3.37) gives an effective incompressibility to the lead-lithium and we can proceed to solve (3.37) as done to derive the Rayleigh-Plesset equation for bubble dynamics [2]. From (3.37) we have \(v_1 = f(\sigma)/\sigma^2 \) so that upon substituting this into (3.37) we have \(\frac{f'}{\sigma^2} + b^2\rho_4, \sigma - \frac{2f^2}{\sigma^2} = 0 \) which can be integrated from \(\sigma = \infty \) to \(\sigma = \sigma_L(\sigma) \) the position of the plasma inner radius in the \(\sigma \)-coordinates to get \(-\frac{f'}{\sigma_L} + b^2\rho_4(\sigma_L) + \frac{f^2}{\sigma_L^2} = 0 \) where we used \(\rho_4(\infty, \sigma) = 0 \). We have \(\rho_4(\sigma_L, \sigma) = 0 \) as well
because if \(r = O(\sqrt{c}) \), \(p = O(e^{3/2}) \) so that the density at the left boundary is \(1 + O(e^{5/2}) \). We then get
\[
(3.38) \quad \frac{df}{d\omega} = \frac{f^2}{2\sigma_L^2}.
\]
Additionally, the velocity at the inner wall \(\frac{d\sigma_L}{d\omega} = v_1(\sigma_L, \vartheta) \) (due to the scaling in this regime there is no extra factor of \(\sqrt{r} \) to deal with) so
\[
(3.39) \quad \frac{d\sigma_L}{d\omega} = \frac{f}{\sigma_L^2}.
\]
Dividing (3.38) and (3.39) we find that \(\frac{df}{d\sigma_L} = \frac{f}{2\sigma_L} \) which has solution \(f = C\sqrt{\sigma_L} \) for a constant \(C \). Thus we can treat \(v_1 \) as a function of the inner wall position where \(v_1(\sigma_L) = C/\sigma_L^{3/2} \) after using the solution in conjunction with (3.39). Given
\[
(3.40) \quad v_1(\chi) = -\frac{\sqrt{2\pi}}{b^2 \chi^{3/2}}
\]
from equation (3.29), we have \(C = \frac{\sqrt{2\pi}}{b^2 \chi^{3/2}} \) and with respect to these outer coordinates
\[
(3.41) \quad v_1(\sigma_L) = -\frac{\sqrt{2\pi}}{b^2 \chi^{3/2} \sigma_L^{3/2}}.
\]
At this point, the system has not felt the effects of the plasma pressure and the wall is rapidly accelerating inwards.

3.3.3. Inner Region for Motion of Plasma Boundary. Numerous balances are possible for the system of (2.11) and it is possible to arrive at the scaling we choose here considering all possible balances and solutions and choose the one that can match to the outer region, but we will consider a physical argument here to obtain the balance. We seek a balance of terms where the pressure of the plasma resists the compression (i.e. the pressure gradient balances the momentum flux). We consider \(r = O(\varepsilon^c) \). If \(r = O(\varepsilon^c) \) then \(p = O(\varepsilon^{7/2-4c}) \) and \(\rho = 1 + O(\varepsilon^{3/2-4c}) \). Based on the growth predicted by (3.41) this would give a scaling of \(v = O(\varepsilon^{1/3-\varepsilon^c/2}) = O(\varepsilon^{3/4-3\varepsilon^c/2}) \).

The form of the scaling as written comes from the velocity growing like \(1/\gamma_L^{3/2} \) but being \(O(\sqrt{c}) \) when \(r = O(\sqrt{c}) \). To balance the pressure/density \(\rho \) term in the momentum equation with the \(v^2 \) terms, we require \(7/2 - 4c = 5/2 - 3c \) so that \(c = 1 \). Now we let \(r = \varepsilon^{1/2} \). Then \(v \sim \varepsilon^{-1/4} v_{-1} \), \(\rho \sim 1 + \varepsilon^{1/2} \rho_1 \), and to balance the scales of velocity times time equals distance, we pick \(t = \varepsilon^{3/4} \tilde{\omega} \) where \(\tilde{\omega} \) measures a time with respect to an arbitrary reference point. The resulting balance is given by
\[
(3.42) \quad v_{-1, z} + \frac{2}{z} v_{-1, \vartheta} = 0 \quad \text{and} \quad v_{-1, \vartheta} + b^2 \rho_1(\vartheta) + (v_{-1}^2)_{z} + \frac{2}{z} v_{-1} = 0.
\]

Using the functional form of \(v_{-1} \) implied by (3.42), \(v_{-1} = \gamma(\tilde{\omega})/z_L^2 \), in (3.42) and integrating as before, this time up to \(z_L \), the position of the wall in the inner coordinates gives us
\[
\frac{dg}{d\omega} = \gamma + \frac{g^2/2}{z_L^2} = 0
\]
where we used \(b^2 \rho_1(z_L, \tilde{\omega}) = \gamma/z_L^4 \). It follows then that
\[
(3.43) \quad \frac{dg}{d\omega} = \frac{\gamma + g^2/2}{z_L^2}.
\]
so that after dividing the equations we get \(\frac{dg}{dz_L} = \frac{\gamma + g^2/2}{z_L g} \) which we separate to get \(\int \frac{g}{\gamma + g^2/2} dg = \int \frac{dz_L}{2Dz_L - 2\gamma} \) (the negative sign giving the correct direction of the wall) which finally gives us

\[
\int_{v_1}^{v} \frac{1}{\sqrt{2Dz_L - 2\gamma}} \, dz_L.
\]

Observe that when \(z_L = z^*_L = \gamma/D \) the velocity is 0 to leading order and this will be our leading order estimate to the compression. To find \(D \), we need to perform matched asymptotics between the inner and outer regions with respect to the functional dependence of the wall velocity upon the wall position.

3.3.4. Matching to Determine Minimum Radius

We now put the outer variables of (3.41) in inner variables to match the behaviours as \(z_L \to \infty \) and \(\sigma_L \downarrow 0 \).

\[
\epsilon^{-1/4} (v_{-1})_{\text{inner}} = \epsilon^{1/2} (v_1)_{\text{outer}}
\]

\[
\epsilon^{-1/4} \frac{-\sqrt{2D}}{z_L^{3/2}} = \epsilon^{1/2} \frac{-\sqrt{2\pi}}{b^2 \chi^{3/2} (\epsilon^{1/2} z_L)^{3/2}}
\]

yielding \(\frac{-\sqrt{2\pi}}{z_L^{3/2}} = \frac{-\sqrt{2\pi}}{b^2 \chi^{3/2} z_L^{3/2}} \) so that \(D = \frac{\pi \epsilon^{1/4}}{b^2 \chi} \). In the \(z \) variable, we have a minimum radius of \(z^*_L = \gamma/D = b^4 \chi^3 \) and we thus find \(r^* = b^4 \chi^3 \epsilon \) consistent with (3.32) found with the energy argument. While the energy argument was assumed true for incompressible fluids, it seems in the asymptotic limit compressibility does not influence the compression to leading order. Note that by having quarter powers of \(\epsilon \), it may becomes difficult to differentiate different asymptotic terms without taking \(\epsilon \) to be extremely small. When \(v = O(\epsilon^{-1/4}) \), this is very close to \(v = O(\epsilon^{-1/2}) \), the sound speed magnitude and the wave-like behaviour of the equations may be close to breaking down. Indeed, when \(\epsilon \) is too large, the local velocity magnitude can even exceed the sound speed during the compression phase.

3.3.5. Dimensional Expression for Plasma Compression

We can finally go back to the dimensional parameters in our problem. Using tables 2 and 3, we find the minimum radius is

\[
R^*_L \approx \frac{C_s^4 \rho_{\text{plasma},0} R^7_{\text{inner},0} \theta^3_0}{\pi \rho_{\text{max}} R^4_{\text{outer},0} T^2_0}
\]
with

\[
\frac{T_0}{R_{\text{outer},0}} \sqrt{\frac{P_{\text{max}}}{\rho_0}} \ll 1
\]

(3.47)

\[
\frac{C_{2}T_{0}^{1/4}P_{\text{max}}^{1/4}}{R_{\text{outer},0}^{1/2} \rho_0} = O(1)
\]

(3.48)

\[
\frac{P_{\text{plasma},0}R_{\text{inner},0}^{4} \rho_0^{7/4}}{P_{\text{max}}^{1/4} R_{\text{outer},0}^{1/2} T_{0}^{7/4}} = O(1)
\]

(3.49)

\[
\frac{R_{\text{inner},0}^{1/4} \rho_0^{1/4}}{R_{\text{outer},0}^{1/2} T_{0}^{1/2}} = O(1).
\]

(3.50)

Equation (3.32) gives the approximate expression for the minimum radius, which requires that \(\epsilon \) is small (3.47) and that \(b, \gamma, \) and \(\chi \) all be \(O(1) \) as given in equations (3.48) through (3.50).

4. Comparison with Numerics. In previous work [12], a finite volume numerical framework was developed to solve the nonlinear conservation laws with the moving boundaries. Using this numerical framework, we run simulations on the asymptotic problem formulated in this paper. Our validation is done in multiple stages: we examine the profiles of the pulses during their formation both numerically and asymptotically by comparing the profiles of the resultant variables; then, we study the growths of the amplitudes of the pulses as they move radially inward as predicted by the asymptotics and numerics; we next proceed to study the existence of the residual velocity field with the numerics and the growth of the inner wall velocity with inner wall position; we observe that the velocity at the inner wall is qualitatively consistent with the numerical results; and finally, we compute the minimal radius in the asymptotic and numerical workings for various values of \(b, \gamma, \chi, \) and \(\epsilon \).

We remark that the asymptotic problem we have considered is primarily concerned with a single direction of information propagation: the pulse travels towards the plasma wall, it is reflected, and then everything else governing the plasma wall takes place locally near the wall and there is no influence from leftgoing waves. We need to exercise caution with this numerically by removing reflections that occur at the outer wall. This allows for better agreement between the asymptotics and numerics but we make two remarks. We first note that if these reflections are not removed then a reflection occurs at the outer wall and disturbances return to hit the plasma again which drastically reduces the compression. Such effects are noticeable for \(\epsilon \lesssim 0.0025 \). The second point to make is that even in attempting to remove the reflections at the outer wall, there is likely still a small numerical error that remains.

4.1. Pulse Formation. We consider two parameter regimes here. One is the for the parameter set of interest, and the other is for a much smaller \(\epsilon \) with other dimensionless parameters set to unity. We fix an end time \(t = \epsilon/2 \) and plot the profiles of \(v \) and \(\rho \) as computed numerically, and with two different levels of asymptotic accuracy. From the plots, we are able to verify that the successive terms of the asymptotic expansion yield higher accuracies, and that the asymptotics and numerics are in good agreement. See figure 2.

4.2. Focusing. Here, we consider the asymptotically predicted growth rates for the peak amplitudes of the velocity and pressure. From the asymptotic predictions, both of these amplitudes
should grow inversely with the position of these peaks. This validation is rather delicate: these growths should be upheld in the limit \(\epsilon \downarrow 0 \); however, there are difficulties in getting the numerics to give highly accurate results on regions where \(r \ll 1 \). What we choose to do is pick a very small value of \(\epsilon = 0.001 \), and consider the growth of the amplitudes on the region \(r > 0.1 \approx O(\sqrt{\epsilon}) \). We plot the predictions as given by a perfect growth of \(1/r \) based on the initial peak pressure and minimum velocity, and the numerical results for the peak amplitude vs position for this \(\epsilon \) value. The plots are given in figure 4 and we observe strong consistency.

4.3. Residual Velocity Field. Our prediction of a steady velocity field resulting from the disturbances interacting with the plasma was based primarily on intuition, as we did not formally find the solution for \(v_1 \) and \(v_2 \) for general \(\tilde{t} \); we simply showed that the potential approaches a constant value along the boundary. Numerically, however, we can validate the scaling. After a long time with respect to the \(\tilde{t} \) time-scale so that \(v_0 \) has had its full effect, we plot the profile of the velocity versus the radial position. As the inner wall moves inward, in its wake there is a velocity profile that scales like \(1/r^2 \). See figure 5.

4.4. Outer Region describing Inner Wall Velocity. This validation is rather delicate as there are a number of sources of error. Firstly, the inner wall position at which the boundary condition of (3.40) is better approximated by \(\sigma = \chi - \sqrt{2\sqrt{\epsilon}} \) as per (3.27) but to leading order we have taken it as \(\sigma = \chi \). In the case considered in figure 6, this already amounts to an error of 17% in estimating the boundary condition which will lead to an error in the constants obtained. We additionally know that \(v \sim \sqrt{\epsilon} v_1 + \epsilon v_2 \) so that there is an \(O(\epsilon) \) error term in the radial position that is accrued over a time scale of \(O(1) \). Throwing these effects together makes it very hard to get a clean fit between numerical and asymptotic results. In finding the slope of the log \(v_L \) vs log \(r_L \) plot, a least squares fit shows the numerical scaling is \(v_L \propto 1/r_{L}^{1.49} \) which is completely consistent with the asymptotic scaling.

4.5. Qualitative Agreement of Inner Wall Velocity. The asymptotics predict a series of phenomena at the inner wall: firstly, the wall is stationary until the pressure pulse reaches it whereby it takes on a Gaussian shape and decreasing in speed; secondly, a smaller asymptotic term

Fig. 4: Numerical and asymptotic descriptions of the growth in peak values for the minimum value of velocity and peak value of pressure. Based on a best fit, the numerically observed scalings are \(1/r^{0.99} \) and \(1/r^{0.90} \) for the left and right plot respectively.
Fig. 5: A plot of the numerical and asymptotic velocity profile after much of the pulses have reflected off of the inner wall. The two are nearly indistinguishable.

Fig. 6: A plot of the numerical and asymptotic velocity profile for how the inner wall velocity implicitly depends on the inner wall position.

describing the wall velocity remains for some time (as the velocity acquires the residual profile); thirdly, the wall rapidly speeds up; and finally, the wall is stopped abruptly on a small spatial scale when the plasma pressure finally takes over. We observe all of these phenomena in figure 7.

4.6. Predictions for Plasma Compression. In this section, we verify that the fundamental asymptotic predictions are consistent with the numerics. Table 5 presents the results. We remark that verifying the asymptotic limit is not trivial. As $\epsilon \downarrow 0$, the numerics, for modest discretizations, lose accuracy due to the very small radial positions under consideration. As a result, we cannot not take ϵ too small. We also have to ensure that quantities such as $b^4 \chi^3 \eta / \pi$, etc. remained roughly $O(1)$ for these values of ϵ. Picking ϵ too large also leads to problems: for one, the higher order
Fig. 7: A numerical validation that the asymptotics have qualitatively captured the behaviour of the inner wall.

<table>
<thead>
<tr>
<th>ε</th>
<th>r^*_asy</th>
<th>r^*_num</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02000</td>
<td>0.01155</td>
<td>0.00845</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01000</td>
<td>0.00600</td>
<td>0.00400</td>
</tr>
<tr>
<td>0.005</td>
<td>0.00500</td>
<td>0.00444</td>
<td>0.00056</td>
</tr>
<tr>
<td>0.0025</td>
<td>0.00250</td>
<td>0.00242</td>
<td>0.00008</td>
</tr>
</tbody>
</table>

Table 5: Asymptotic and numerical predictions of minimum radius of plasma for different values of ϵ with $b = 1.05, \chi = 0.937$ and $\gamma = \pi$. Based on a least squares linear regression in a log-log plot of the difference versus ϵ, the convergence rate appears to be $O(\epsilon^{2.3}) = o(\epsilon)$. The convergence rate is excellent likely either due to small coefficients in the $o(\epsilon)$ asymptotic series terms or fortuitous cancellations of higher order asymptotic error terms.

terms may dominate over the desired $r^* = O(\epsilon)$ behaviour. Another issue is that if ϵ is not small enough, the apparently negligible displacement of the inner wall given by (3.27) could be larger than the initial inner radius of $\chi \sqrt{\epsilon}$. In table 5, we compute the minimum radius asymptotically and numerically. We verify that the difference in the minimum radius between the asymptotic and exact (numerical) predictions is $o(\epsilon)$ when $b, \chi,$ and γ are fixed. We choose $b = 1.05, \chi = 0.937, \gamma = \pi$ so that the minimum radius should be 0.99994ϵ.

4.6.1. Comments on the Model Parameter Regime

With respect to the parameters of table 3, the asymptotic prediction of the minimum radius is $r^* = 0.00229$ and the numerical results are larger with a value of 0.00649. The two predictions are roughly on the same scale, but are not quantitatively consistent. We speculate this is the result of the fact that $b^4 \chi^3 \gamma / \pi = 0.18$, which is approximately $O(\sqrt{\epsilon})$ and not $O(1)$ with respect to $\epsilon = 0.0126$. Somewhere along the way, the asymptotic series lost its ordering and this is likely the cause of the discrepancy. We would naturally expect these results to be more accurate if ϵ were smaller or b, γ and χ were nearer unity (for example if we use the lead sound speed at 2 GPa, roughly 2400 m/s instead,
with $b = 0.64$, the asymptotic prediction is 0.00399 and the numerical result is 0.00683). Despite the discrepancy, there is qualitative consistency between the numerical and asymptotic modelling. In previous work [12] where the model was very similar, the data show that the inner radius had the greatest impact upon the compression. This was followed by a tie between maximum external pressure and maximum outer radius, and then pulse time scale, sound speed, initial plasma pressure. This is reasonably consistent with (3.46), where based on the respective powers of the parameters, the relative sensitivity of the minimal radius with respect to the parameters (i.e. the percentage by which the minimal radius would change for a percent change in the parameter), from most to least sensitive follows the ordering: initial plasma radius; sound speed, initial outer radius, and maximum impulse pressure (three-way tie), pulse time scale, and initial plasma pressure.

With the results of the asymptotics, we can make a few application-relevant statements. Based on (2.14), (3.8) and (3.30), we note that only a small fraction of the energy input actually goes towards compressing the plasma. Indeed if we compute the energy input by

$$
\int_{-\infty}^{\infty} -4\pi r_R(t)^2 p_R(t) v_R(t) dt \sim \frac{4\pi \epsilon^{3/2}}{b} \int_{-\infty}^{\infty} e^{-2\tau^2} \tau d\tau = \frac{\sqrt{8\pi} \epsilon^{3/2}}{b},
$$

the leading order energy is $O(\epsilon^{3/2})$ but only $O(\epsilon^{5/2})$ ultimately goes towards compression. A lot of energy is lost in reflection. In our modelling, we neglected the gas pressure of the plasma, which would also work to oppose the compression of the plasma; the degree the plasma is compressed is likely less than what we predict asymptotically i.e. in a model with the gas pressure, we would expect r^* to be larger than our value given in (3.32) at leading order. Also, based on the previous work mentioned in the previous paragraph, we can see that a smaller minimum radius does not necessary yield more promising fusion conditions (based on the Lawson triple product criterion); the time over which the plasma is compressed is another vital element. While our work here predicts the minimum radius, this is only one of many complex components required for the success of magnetized target fusion.

5. Conclusions and Future Work. In this paper, an analytic result for the minimal radius of a plasma has been obtained in the limit of a very fast impulse time scale. Although the model is highly simplified, we can describe qualitatively the effects of key design parameters in the magnetized target fusion model in question. Equation 3.46 is qualitatively accurate, given the stipulations outlined in equations (3.47) through (3.50), and it provides a good ballpark quantitative estimate for the minimum radius. The key parameters that are within control are likely P_{max}, $R_{\text{outer,0}}$, and T_0. In this case, within the limitations of the physical model, the plasma is compressed to a smaller and smaller radius as the piston pressure, initial outer radius, and pulse time scale increase. If the medium through which the pressure pulses travel could be modified then decreasing either its sound speed or density (or both) would be ideal while sustaining the piston pressure. Also, if the initial plasma pressure or size could be decreased, a greater compression can take place.

Although this problem contained nontrivial obstacles, including nonlinear conservation laws and moving boundaries, through appropriate scaling arguments and suitable solution techniques and estimates, an analytic result that agrees well with numerical simulations has been obtained in the limit where $\epsilon \downarrow 0$. Future work could include developing the model further (to be more physically accurate), which could possibly be approximated in an asymptotic regime.

Acknowledgments. A huge thanks to Brian Wetton and Michael Ward of my advisory committee for their insights in this work and to Nilima Nigam and my officemates for their encourage-
ment. Thank you to George Bluman for a relevant discussion on symmetry. For funding, I would also like to thank Westcoast Energy Inc. for a scholarship. Also thanks to Sandra Barsky and Aaron Froese of General Fusion for helpful discussions.

REFERENCES