Power Operations and Differentials in Higher Real *K*-Theory

M. Hill¹, M. Hopkins², D. Ravenel³

¹University of Virginia

²Harvard University

³University of Rochester

AMS Sectional Meeting, Middletown, 2008

Outline

Motivation

- Goal: Homotopy of EOn
- Previous Work

2 Our Results

- Main Results
- Ideas and Goals

Goal: Homotopy of *EO_n* Previous Work

Basic Setup

- Hopkins-Miller Theorem: the Lubin-Tate spectrum E_n is an E_{∞} ring spectrum and \mathbb{G}_n acts by E_{∞} ring maps.
- Devinatz-Hopkins: $E_n^{h\mathbb{G}_n} = L_{K(n)}S^0$.
- Basic step: Approximate E^{hGn}_n by EO_n(G) = E^{hG}_n for G finite.

Goal: Homotopy of *EO_n* Previous Work

Homotopy Fixed Points

- $E^{hG} = F_G(EG_+, E).$
- Skeletal filtration of EG₊ gives a filtration of E^{hG}.
- Associated spectral sequence is the "homotopy fixed point spectral sequence".
- $E_2 = H^s(G; \pi_t(E))$, Adams-Novikov style differentials.
- Shows up here and in homotopy approaches to algebraic *K*-theory.

Goal: Homotopy of *EO_n* Previous Work

Previous Work

- E_1 is *p*-adic *K*-theory & $\mathbb{G}_1 = \mathbb{Z}_p^{\times}$.
- At 2, $E_1^{\mathbb{Z}/2} = KO_2^{\wedge}$.
- At 2 and 3, can find groups of order 24 in \mathbb{G}_2 , and E_2^G is essentially *TMF*.

Proposition

At p, can find cyclic groups of order p^k in $\mathbb{G}_{p^{k-1}(p-1)f}$.

Goal: Homotopy of *EO_n* Previous Work

Hopkins-Miller

Theorem

Modulo the image of the transfer,

$$egin{aligned} &\mathcal{H}^{*}ig(\mathbb{Z}/m{
ho};\pi_{*}(E_{m{
ho}-1})ig) = \mathbb{F}_{m{
ho}}[\Delta^{\pm1},eta]\otimes E(h_{1,0}), \end{aligned}$$

 $|\beta| = (-2, 2), |\Delta| = (2p, 0), and |h_{1,0}| = (2p - 3, 1).$ There is a d_{2p-1} -differential:

$$d_{2p-1}(\Delta) = h_{1,0}\beta^{p-1}\Delta.$$

Main Results Ideas and Goals

Group Action

Theorem

 $\begin{aligned} H^*_{Tate}\big(\mathbb{Z}/p; \pi_*(E_{f(p-1)})\big) &= \\ \mathbb{F}_p[\Delta^{\pm 1}, \beta^{\pm 1}][\![\delta_1, \dots, \delta_{f-1}]\!] \otimes E(h_{1,0}, \dots, h_{f,0}), \\ \text{where } |\beta| &= (-2, 2), \, |\Delta| = (2p, 0), \, |\delta_i| = (0, 0), \, \text{and} \\ |h_{i,0}| &= (2p^i - 3, 1). \end{aligned}$

Actually identify the structure of $\pi_* E_{f(p-1)}$ as a \mathbb{Z}/p -module, giving the result.

Main Results Ideas and Goals

Differentials

Theorem

We have d_{2p-1} -differentials

$$d_{2p-1}(h_{i,0}) = h_{1,0}h_{i,0}\beta^{p-1}.$$

We have d_{2p^i-1} -differentials

$$d_{2p^{i}-1}(\Delta^{p^{i-1}}) = h_{i,0}\beta^{p^{i}-1}\Delta^{p^{i-1}}.$$

Main Results Ideas and Goals

Universal Examples

- Sources of differentials: skeleta of Thom spectra over BG.
- Let V be a [virtual] representation of G, and let $S^V \rightarrow E$ be a G-map.
- Then we get a filtration preserving map $(S^V)^{hG} \rightarrow E^{hG}$.
- The source is the dual of a Thom spectrum over BG.

Main Results Ideas and Goals

Canonical example:

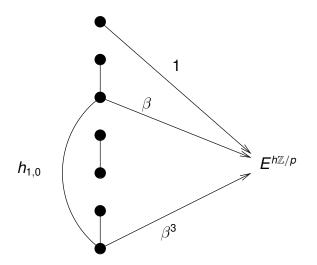
$$S^0 \xrightarrow{1} E_{f(p-1)}$$

- $(S^0)^{h\mathbb{Z}/p} = D(B\mathbb{Z}/p_+)$
- The (-2k)-cell maps in as β^k .

Motivation Our Results

Main Results Ideas and Goals

Differentials on β



Main Results Ideas and Goals

Getting Remaining Differentials

Several Strategies:

- **(**) Classical power operation constructions in the E_{∞} context.
- Sind orientable bundles for *EO*-theory⇒ permanent cycles. Ex: $βΔ^{1/(p-1)}$.
- Ocomparing to other theories like T(i).
- 9 Power operation construction in the E_2 context.

Using geometry, we can find nice, universal families of differentials.

These let us completely described $\pi_*(EO_n(\mathbb{Z}/p))$.